
Genome-Driven Personalized Medicine of Cancer via 
Machine Learning and Phylogenetic Models

Yifeng Tao

August 11, 2021

1



GOAL: To understand mechanism of tumor evolution 
and utilize genomic data for personalized medicine.

o Phenotype inference of cancer.

o Mechanism of tumor progression.

o Machine learning on evolutionary features.
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• Cancer is a disease caused by aberrant mutations in genome.
• It develops via an evolutionary process into mixture of heterogeneous populations.

Tumor heterogeneity and personalized medicine
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https://www.yourgenome.org/facts/what-is-the-central-dogma

Inference of RNA expression from mutated genes

Central dogma: DNA à mRNA à protein.

o RNA is the bridge between mutations and downstream phenotypes.

o Identify driver mutations in cancer with the supervision of mRNA.
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Tao Y et al. PSB. 2020.

Inference of RNA expression from mutated genes

GIT: Genomic Impact Transformer

o Autoencoder architecture.
o Input: bag of mutated genes.
o Output: differentially 

expressed genes.

Self-attention: capture contextual 
impact of input mutated genes.

o Widely used in CV/NLP.
o Performance.
o Interpretability.
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Examples of self-attention applications

S Woo et al. ECCV. 2018. J Cheng et al. EMNLP. 2016.

American egret           Eskimo dog             Snow leopard

• Computer Vision and Natural Language processing
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Leiserson MD et al. Nature. 2015.
Mikolov T et al. NeurIPS. 2013.

Interferon (IFN)

Co-occurrence pattern (e.g., mutually exclusive alterations)

Pretraining gene embeddings: Gene2Vec
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Performance of GIT and competitors

Essential modules:

Deeper MLP is not always better.

init: gene embeddings

can: cancer type input

attn: attention mechanism
C
V

C
V
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Personalized attention weights
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Survival profiles encoded by tumor embeddings

Normally impossible by only using mutation data due to sparsity.
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Inference of drug response
Challenges in predicting drug response of cancer cell lines

o Robustness: noise.
o Contextual effects: gene interactions.
o Interpretability: biomarkers.
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Tao Y et al. PMLR. 2020.

CADRE: Contextual Attention-based Drug REsponse
Collaborative filtering: copes with noisy data.
Contextual attention mechanism: improves interpretability and performance.
Pretrained gene embeddings: boosts performance further.
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Performance of CADRE and competitors

Traditional algorithm: collaborative filtering
Deep learning: DeepDR
SADRE: self-attention
CADRE: contextual-attention
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Cell clonesBulk tissue

Deconvolution

Bulk seq

Image credit to Bo Xia.
Chen F et al. Cancer Research. 2020.

Cell clones

Deconvolution of bulk RNA

Heterogeneous tumor populations/clones even from same tissue.
scRNA not available, e.g., FFPE tissue of breast cancer / immune cells.
Deconvolution of bulk tumor samples is essential.

scSeq



16

FCB

Mathematical formulation of deconvolution problem

Matrix factorization.
Additional constraints make it hard to solve.



17Tao Y et al. Frontiers in Physiology. 2020.

Solution 1: Gradient descent / backpropagation

NND: Neural Network Deconvolution
o Equivalently transfer the problem into a 

neural network (w/o input).
o Solved with backpropagation.
o Easily adapted when constraints change.

Limitations
o Need to choose learning rate.
o Computationally slow.
o Accuracy is moderate.

cwn: column-wise normalization



18

Tao Y et al. Bioinformatics. 2020.

Solution 2: Hybrid optimizer

RAD: Robust and Accurate Deconvolution
Fast and accurate by utilizing a hybrid optimizer w/ three phases.
Almost no parameters need to choose manually.

Phase 1: Multiplicative update of C and F until convergence
Fast to converge to a reasonable solution.

Phase 2: Coordinate descent of C and F until convergence
Further reduces loss by ~5-30%.

Phase 3: Minimum similarity selection of C
Select biologically meaningful solutions.
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Performance of NND and RAD
GSE19830 dataset: mixture of liver, brain and lung cells (Shen-Orr et al. Nature Methods. 2010)



Dataset:
o Matched bulk RNA-Seq
o Breast cancer metastasis patients
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Common evolutionary mechanism

Infer phylogenies from RAD-unmixed populations

Common early pathway-level events:
o ↓ PI3K-Akt
o ↓ Extracellular matrix (ECM)-receptor interaction
o ↓ Focal adhesion

Zhu L et al. Journal for ImmunoTherapy of Cancer. 2019.
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• Clinical and driver-level genomic factors are well-studied.

o TNM pathological stage, driver mutations in BRCA1/2, PIK3CA, etc.

• Impact of evolutionary features are little known.

• Different types of factors are correlated.
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Factors affecting tumor prognosis
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Pipeline of extracting evolutionary features

Mutational signatures:
o e.g., TàA, GTCàGAC, mutation rate of CNAs.

Topological structures of phylogenies:

o e.g., height, average branch length.



• Employ L0-regularizaed Cox regression

o Solved heuristically through step-wise feature selection

• Risk evaluated in the log-scale HR (hazard ratio)
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Phylo-risk: Evaluating contribution of evolutionary 
features to tumor progression risk

Tao Y et al. PLOS Computational Biology. 2021.
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• Trinucleotide SNV rate

• Features related to CNAs and SVs

o CNA duplication/deletion rates

o Rates of CNA above/below 500k nt

• Average branch length in unit of SV rates

Important evolutionary features
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• Two datasets (TCGA/ICGC); Two cancer types (BRCA/LUCA); Two tasks (OS/DFS).
• Evolutionary features account for around 1/3 of the overall risk.

Contribution of evolutionary factors



• Performance evaluated through nested cross-validation.
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Improving prognostic prediction using evolutionary features
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• Interpretable deep learning models for accurate phenotype inference of tumor.

• Deconvolution of bulk breast cancer samples discovers early pathway-level event of metastasis.

• Trinucleotide mutation rates, CNAs, and SVs contribute to around 1/3 of the tumor progression risk.
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Conclusions
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Future work
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