Genome-Driven Personalized Medicine of Cancer via Machine Learning and Phylogenetic Models

Yifeng Tao

August 11, 2021

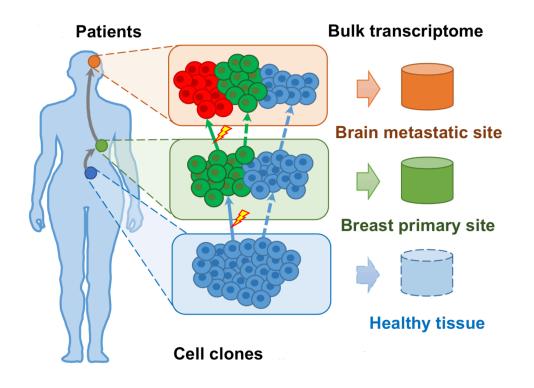
Carnegie Mellon University School of Computer Science

Tumor heterogeneity and personalized medicine

- Cancer is a disease caused by aberrant mutations in genome.
- It develops via an evolutionary process into mixture of heterogeneous populations.

GOAL: To understand mechanism of tumor evolution and utilize genomic data for personalized medicine.

- Phenotype inference of cancer.
- Mechanism of tumor progression.
- Machine learning on evolutionary features.



OUTLINE

Reliable phenotype inference of cancer through well-designed interpretable machine learning models

1

Revealing intra-/intertumor heterogeneity and mechanism of tumor progression via robust deconvolution and phylogenetic algorithms

2

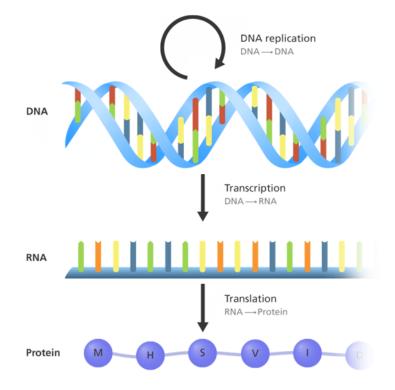
Improving prognostic prediction of cancer by incorporating machine learning and evolutionary methods

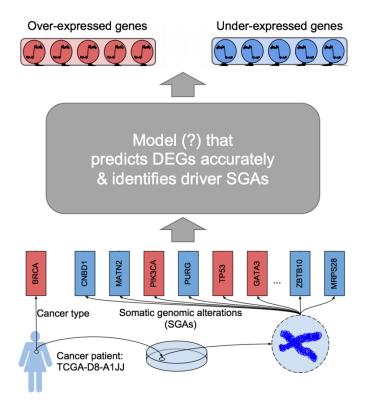
3

Inference of RNA expression from mutated genes

Central dogma: DNA \rightarrow mRNA \rightarrow protein.

- RNA is the bridge between mutations and downstream phenotypes.
- o Identify driver mutations in cancer with the supervision of mRNA.





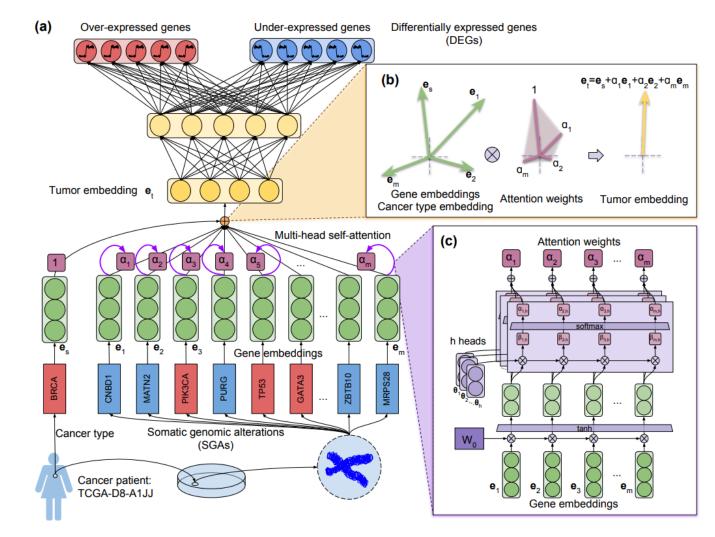
https://www.yourgenome.org/facts/what-is-the-central-dogma

Inference of RNA expression from mutated genes

- **GIT:** Genomic Impact Transformer
 - Autoencoder architecture.
 - Input: bag of mutated genes.
 - Output: differentially expressed genes.

Self-attention: capture contextual impact of input mutated genes.

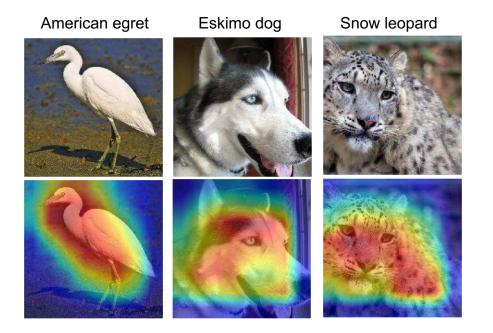
- Widely used in CV/NLP.
- Performance.
- Interpretability.



Tao Y et al. PSB. 2020.

Examples of self-attention applications

Computer Vision and Natural Language processing



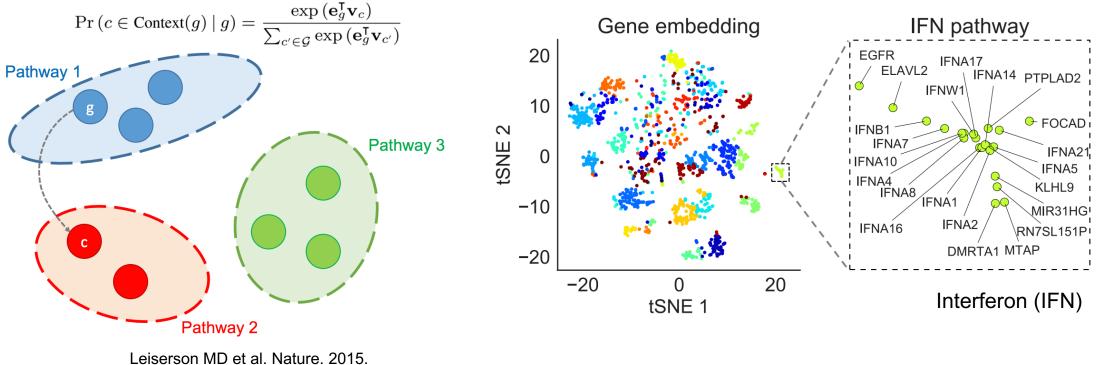
S Woo et al. ECCV. 2018.

The FBI is chasing a criminal on the run.									
The FBI is chasing a criminal on the run.									
The	FBI	is chasing a criminal on the run.							
The	FBI	is	chasing a criminal on the run.						
The	FBI	is	chasing	a c	a criminal on the run .				
The	FBI	is	chasing	a	criminal on the run.				
The	FBI	is	chasing	a	criminal	on the run .			
The	FBI	is	chasing	a	criminal	on	the r	un.	
The	FBI	is	chasing	a	criminal	on	the	run.	
The	FBI	is	chasing	a	criminal	on	the	run	

J Cheng et al. *EMNLP*. 2016.

Pretraining gene embeddings: Gene2Vec

Co-occurrence pattern (e.g., mutually exclusive alterations)



Mikolov T et al. NeurIPS. 2013.

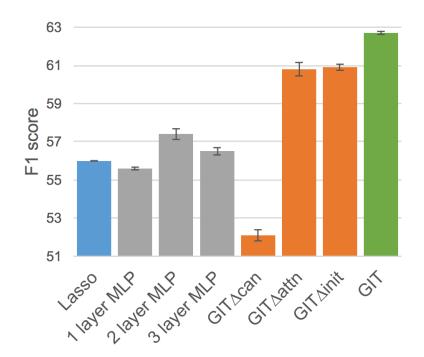
Performance of GIT and competitors

Essential modules:

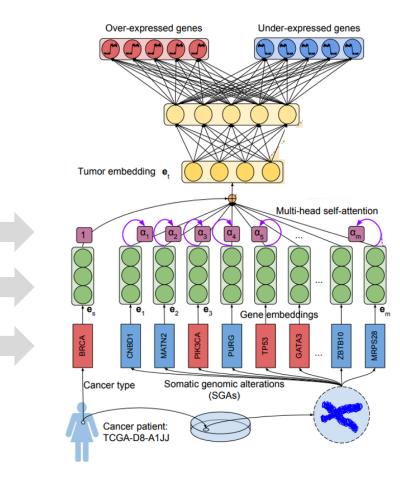
■ attn: attention mechanism

• init: gene embeddings

can: cancer type input

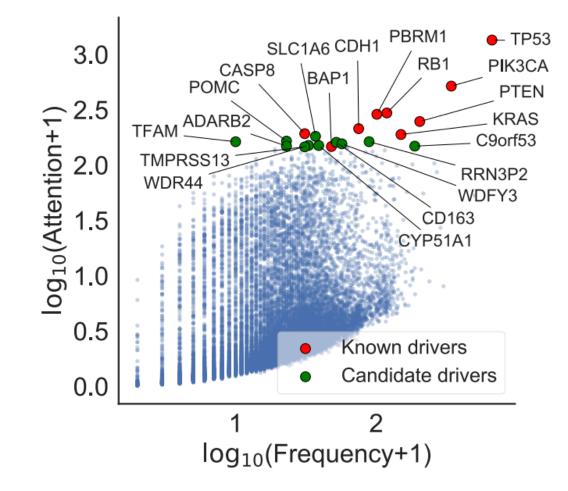


Deeper MLP is not always better.

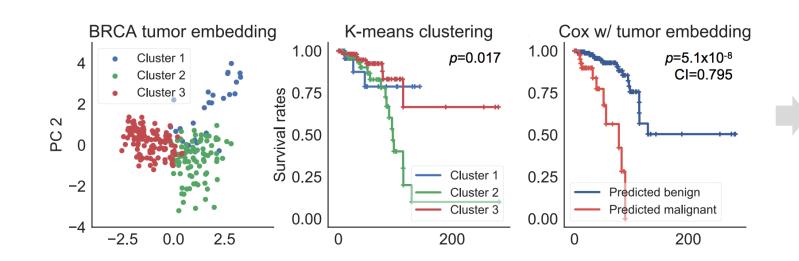


8

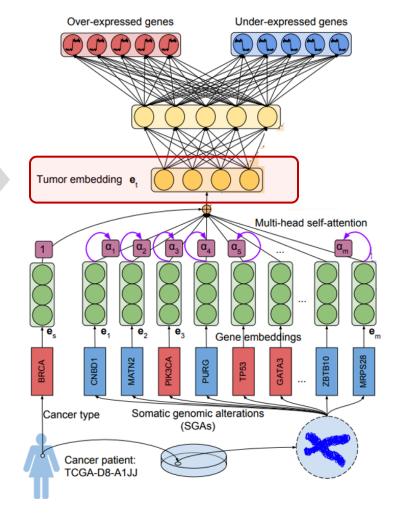
Personalized attention weights



Survival profiles encoded by tumor embeddings



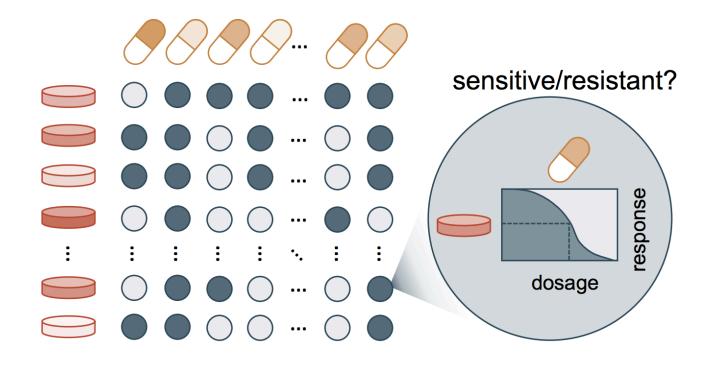
Normally impossible by only using mutation data due to sparsity.



Inference of drug response

Challenges in predicting drug response of cancer cell lines

- o Robustness: noise.
- **Contextual effects:** gene interactions.
- Interpretability: biomarkers.

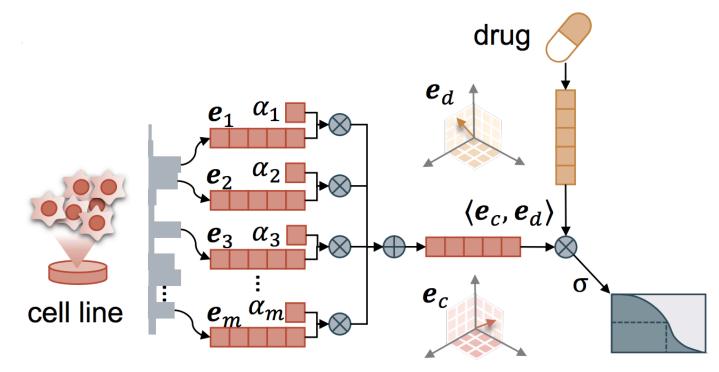


CADRE: Contextual Attention-based Drug REsponse

Collaborative filtering: copes with noisy data.

Contextual attention mechanism: improves interpretability and performance.

Pretrained gene embeddings: boosts performance further.

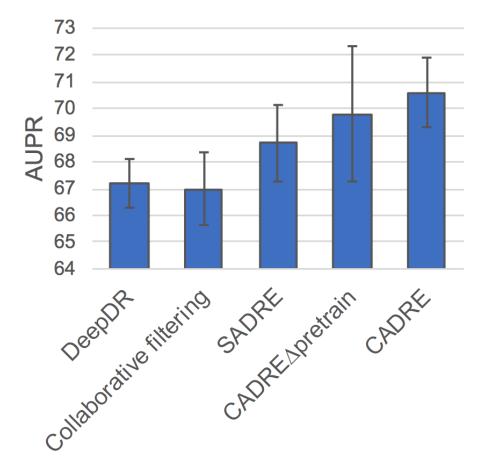


Tao Y et al. PMLR. 2020.

Performance of CADRE and competitors

Traditional algorithm: collaborative filtering Deep learning: DeepDR SADRE: self-attention CADRE: contextual-attention

GDSC dataset



OUTLINE

Reliable phenotype inference of cancer through well-designed interpretable machine learning models

1

Revealing intra-/intertumor heterogeneity and mechanism of tumor progression via robust deconvolution and phylogenetic algorithms

2

Improving prognostic prediction of cancer by incorporating machine learning and evolutionary methods

3

Deconvolution of bulk RNA

Heterogeneous tumor populations/clones even from same tissue. scRNA not available, e.g., FFPE tissue of breast cancer / immune cells. Deconvolution of bulk tumor samples is essential.

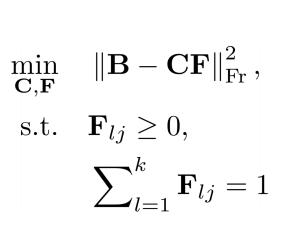


Chen F et al. Cancer Research. 2020.

Mathematical formulation of deconvolution problem

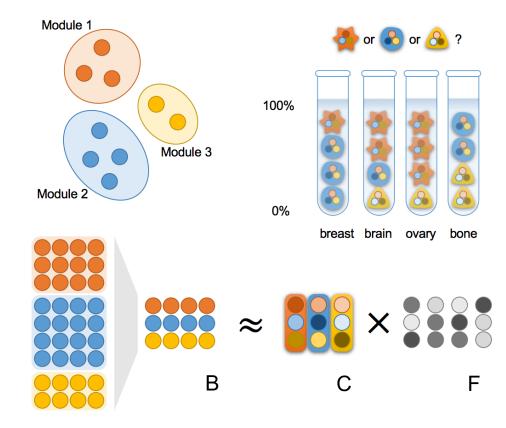
Matrix factorization.

Additional constraints make it hard to solve.



Cancer biology

Computational model



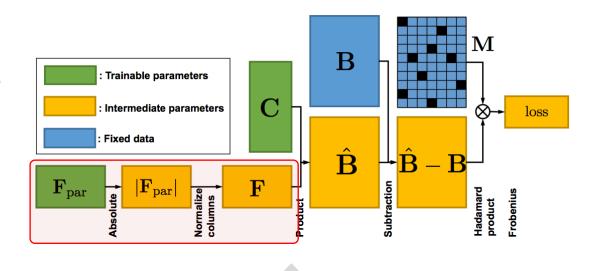
Solution 1: Gradient descent / backpropagation

NND: Neural Network Deconvolution

- Equivalently transfer the problem into a neural network (w/o input).
- Solved with backpropagation.
- Easily adapted when constraints change.

Limitations

- Need to choose learning rate.
- Computationally slow.
- Accuracy is moderate.



$$egin{aligned} \min & \left\| \mathbf{B} - \mathbf{C} \mathbf{F}
ight\|_{\mathrm{Fr}}^2 \,, \ \mathrm{s.t.} & oldsymbol{F}_{lj} \geq 0, \ & \sum_{l=1}^k \mathbf{F}_{lj} = 1 \end{aligned}$$

$$\min_{\mathbf{C}, \mathbf{F}_{par}} \|\mathbf{B} - \mathbf{CF}\|_{Fr}^{2}, \\ \text{s.t.} \quad \mathbf{F} = \operatorname{cwn}(|\mathbf{F}_{par}|)$$

cwn: column-wise normalization

Solution 2: Hybrid optimizer

RAD: Robust and Accurate Deconvolution

Fast and accurate by utilizing a hybrid optimizer w/ three phases. Almost no parameters need to choose manually.

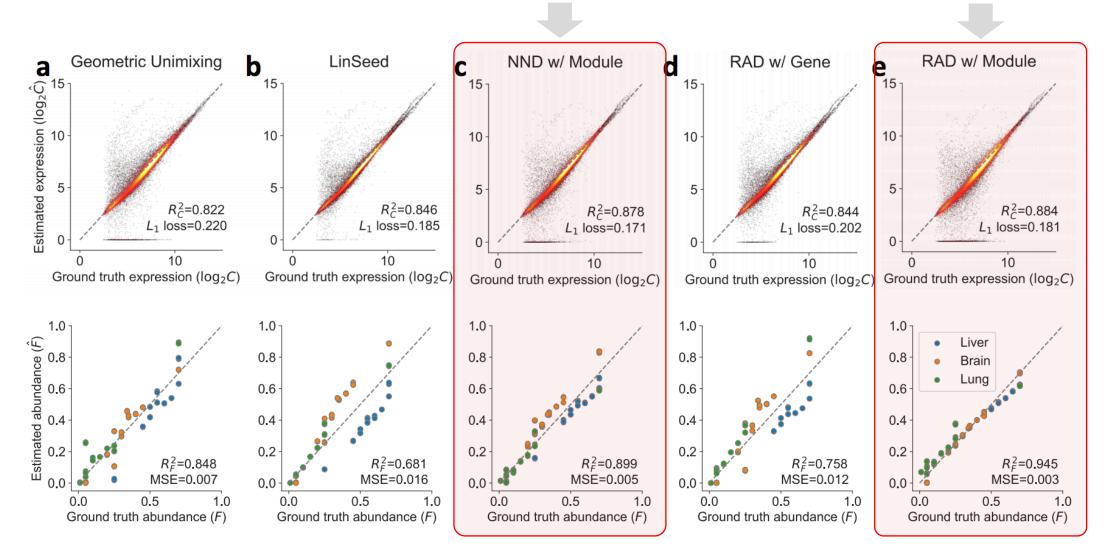
Phase 1: Multiplicative update of C and F until convergence Fast to converge to a reasonable solution.
Phase 2: Coordinate descent of C and F until convergence Further reduces loss by ~5-30%.
Phase 3: Minimum similarity selection of C Select biologically meaningful solutions.

$$\begin{split} \min_{\mathbf{C},\mathbf{F}} & \|\mathbf{B} - \mathbf{CF}\|_{\mathrm{Fr}}^2 \,, \\ \text{s.t.} & \mathbf{C}_{il} \geq 0, \quad i = 1, ..., m, \ l = 1, ..., k \\ & \mathbf{F}_{lj} \geq 0, \quad l = 1, ..., k, \ j = 1, ..., n \\ & \sum_{l=1}^k \mathbf{F}_{lj} = 1, \qquad j = 1, ..., n \end{split}$$

Tao Y et al. Bioinformatics. 2020.

Performance of NND and RAD

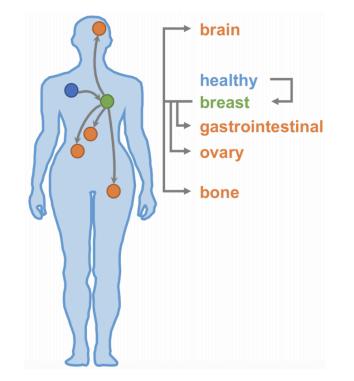
GSE19830 dataset: mixture of liver, brain and lung cells (Shen-Orr et al. Nature Methods. 2010)



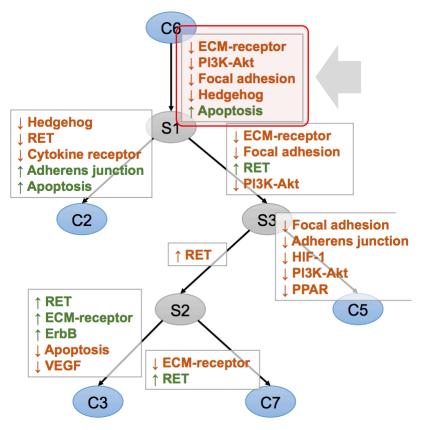
Common evolutionary mechanism

Dataset:

- Matched bulk RNA-Seq
- o Breast cancer metastasis patients



Zhu L et al. Journal for ImmunoTherapy of Cancer. 2019.



Infer phylogenies from RAD-unmixed populations

Common early pathway-level events:

- $\circ \downarrow \mathsf{PI3K}\text{-}\mathsf{Akt}$
- $\circ \downarrow$ Extracellular matrix (ECM)-receptor interaction
- $\circ \downarrow$ Focal adhesion

OUTLINE

Reliable phenotype inference of cancer through well-designed interpretable machine learning models Revealing intra-/intertumor heterogeneity and mechanism of tumor progression via robust deconvolution and phylogenetic algorithms

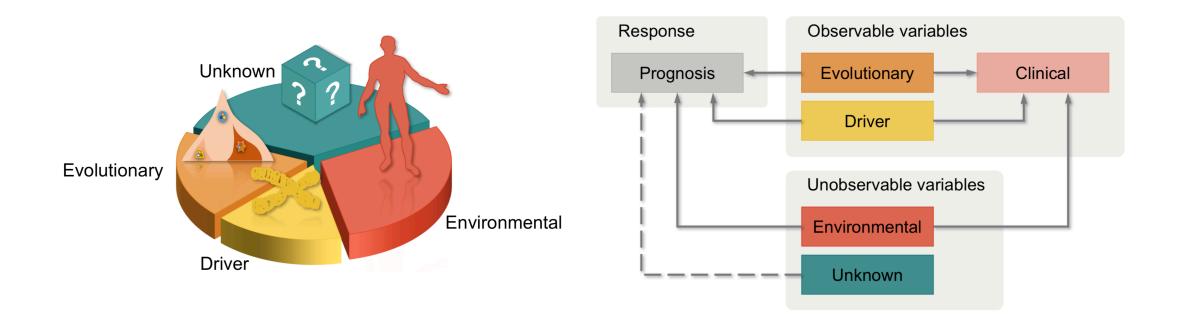
2

Improving prognostic prediction of cancer by incorporating machine learning and evolutionary methods

3

Factors affecting tumor prognosis

- Clinical and driver-level genomic factors are well-studied.
 - TNM pathological stage, driver mutations in BRCA1/2, PIK3CA, etc.
- Impact of evolutionary features are little known.
- Different types of factors are correlated.



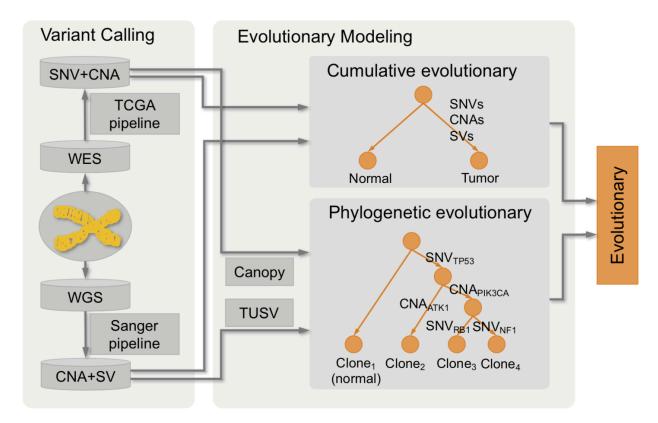
Pipeline of extracting evolutionary features

Mutational signatures:

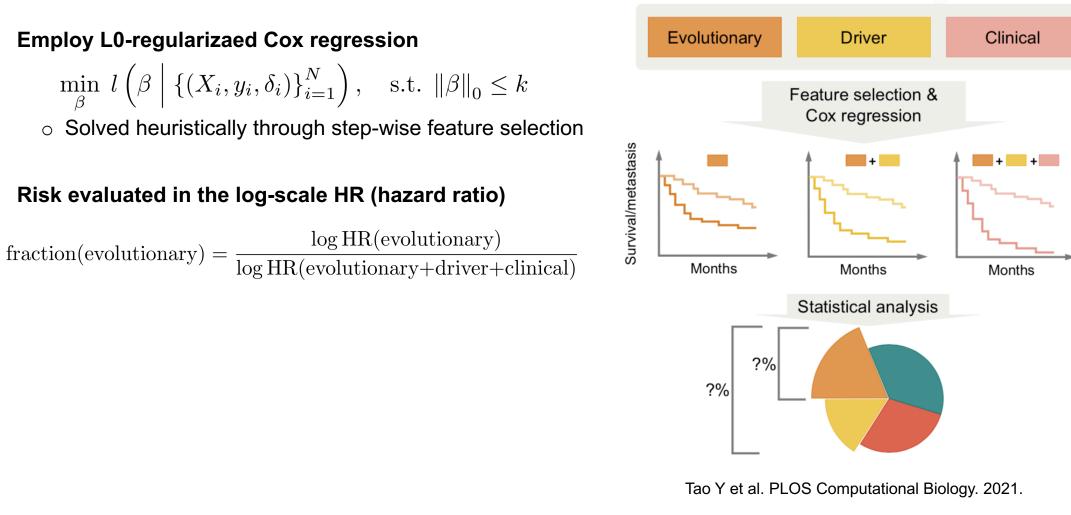
∘ e.g., $T \rightarrow A$, $GTC \rightarrow GAC$, mutation rate of CNAs.

Topological structures of phylogenies:

o e.g., height, average branch length.

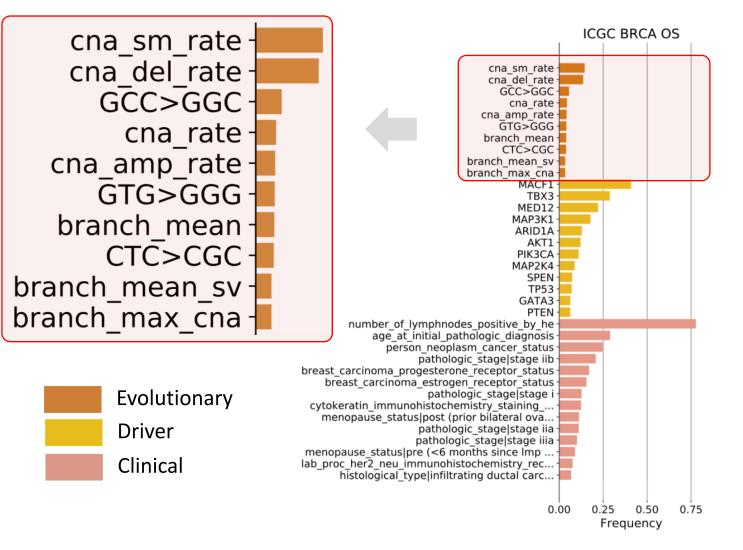


Phylo-risk: Evaluating contribution of evolutionary features to tumor progression risk



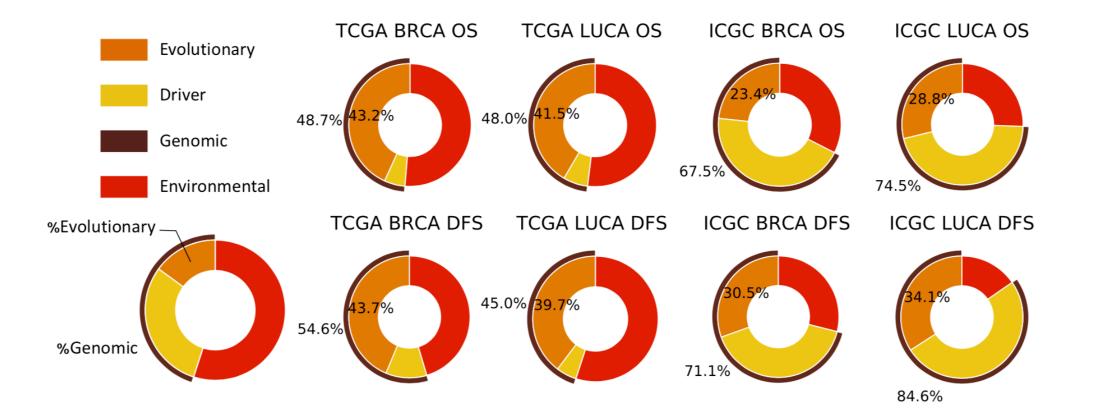
Important evolutionary features

- Trinucleotide SNV rate
- Features related to CNAs and SVs
 - o CNA duplication/deletion rates
 - Rates of CNA above/below 500k nt
- Average branch length in unit of SV rates



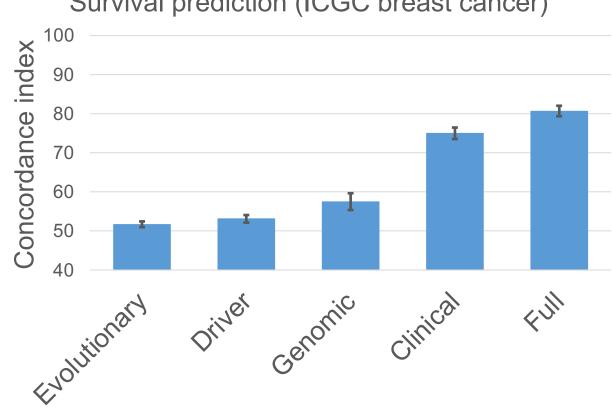
Contribution of evolutionary factors

- Two datasets (TCGA/ICGC); Two cancer types (BRCA/LUCA); Two tasks (OS/DFS).
- Evolutionary features account for around 1/3 of the overall risk.



Improving prognostic prediction using evolutionary features

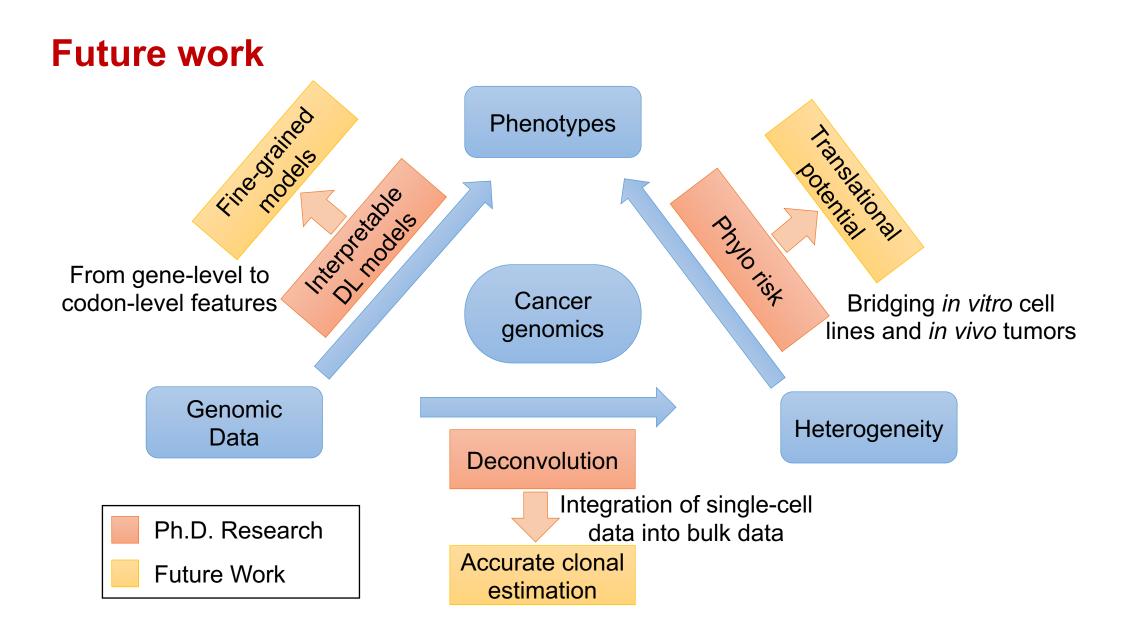
• Performance evaluated through nested cross-validation.



Survival prediction (ICGC breast cancer)

Conclusions Phenotypes Interpretables Phylo risk Cancer genomics Genomic Heterogeneity Data Deconvolution

- Interpretable deep learning models for accurate phenotype inference of tumor.
- Deconvolution of bulk breast cancer samples discovers early pathway-level event of metastasis.
- Trinucleotide mutation rates, CNAs, and SVs contribute to around 1/3 of the tumor progression risk.



Acknowledgments

Prof. Russell Schwartz Haoyun Lei Xuecong Fu Marcus Thomas Arjun Srivatsa Xiaoyue Cui Ziyi Cui Jesse Eaton Hannah Kim Haoran Chen Yuangi Zhao Alex Guo Rishi Verma Alyssa Lee Prof. Hatice Ulku Osmanbeyoglu Xiaojun Ma

Drake Palmer

Dr. William W. Cohen

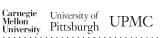
Prof. Jian Ma Ashok Rajaraman Yang Zhang

Prof. Xinghua Lu Shuangxia Ren Chunhui Cai Michael Q. Ding Yifan Xue Xueer Chen Qiao Jin

Prof. Adrian V. Lee Kai Ding Fangyuan (Chelsea) Chen

Prof. Eric P. Xing Haohan Wang Benjamin Lengerich Pengtao Xie

Pittsburgh Health Data Alliance



Center for Machine Learning and Health Carnegie Mellon University

