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ABSTRACT

Cancer is a disease of gene dysregulation, where
cells acquire somatic and epigenetic alterations
that drive aberrant cellular signaling. These alter-
ations adversely impact transcriptional programs
and cause profound changes in gene expression. In-
terpreting somatic alterations within context-specific
transcriptional programs will facilitate personalized
therapeutic decisions but is a monumental task. To-
ward this goal, we develop a partially interpretable
neural network model called Chromatin-informed In-
ference of Transcriptional Regulators Using Self-
attention mechanism (CITRUS). CITRUS models the
impact of somatic alterations on transcription factors
and downstream transcriptional programs. Our ap-
proach employs a self-attention mechanism to model
the contextual impact of somatic alterations. Further-
more, CITRUS uses a layer of hidden nodes to ex-
plicitly represent the state of transcription factors
(TFs) to learn the relationships between TFs and
their target genes based on TF binding motifs in the
open chromatin regions of tumor samples. We apply
CITRUS to genomic, transcriptomic, and epigenomic
data from 17 cancer types profiled by The Cancer
Genome Atlas. CITRUS predicts patient-specific TF
activities and reveals transcriptional program vari-
ations between and within tumor types. We show
that CITRUS yields biological insights into delineat-
ing TFs associated with somatic alterations in indi-

vidual tumors. Thus, CITRUS is a promising tool for
precision oncology.

INTRODUCTION

The complex interplay between signaling inputs and tran-
scriptional responses dictates important cellular functions.
Dysregulation of this interplay leads to development and
progression of disease, which has been most clearly delin-
eated in the context of certain cancers. Cancer cells ac-
quire somatic alterations that modify signaling and tran-
scriptional programs, leading to profound changes in gene
expression. We still lack a complete understanding of how
somatic alterations affect cellular function in cancer. To be-
gin to understand these effects, it is important to study so-
matic alterations within the specific transcriptional context
in which they are found. Context- and patient-specific stud-
ies can be achieved with machine learning techniques, which
are expected to facilitate personalized therapeutic decisions.

In the last decade, a monumental effort has been made
to molecularly profile tumors by consortia, including The
Cancer Genome Atlas (TCGA) and the International Can-
cer Genome Consortium (1,2). The multimodal datasets
generated by these efforts include gene expression and so-
matic alterations, such as recurrent mutations and copy
number variations (CNVs). The combination of genomic
and transcriptomic information enables the integration of
transcriptional states with upstream signaling pathways.
Several methods have been developed to connect somatic
alterations to a prior network or to gene expression (3–
9). More recently, the Genomic Data Analysis Network
generated assay for transposase-accessible chromatin with
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high-throughput sequencing (ATAC-seq) data for a sub-
set of TCGA samples (∼500 patients) (10). Although chro-
matin profiling helps uncover context-dependent and/or
non-linear effects of transcription factors (TFs) on gene
expression, it has not yet been incorporated into meth-
ods that connect somatic alterations to transcriptional pro-
grams across cancers. Incorporating DNA sequence infor-
mation at promoter, intronic, and intergenic enhancers from
ATAC-seq tumor profiles using TF motif analysis will im-
prove the modeling of transcriptional regulation and de-
lineate the impact of somatic alterations on transcriptional
programs.

Deep learning is a powerful tool for capturing non-linear
feature interactions that can explain the underlying biologi-
cal phenomena. For example, attention mechanism is a deep
learning method that has been widely used in computer vi-
sion and natural language processing. In contrast to tra-
ditional deep learning methods, the self-attention mecha-
nism considers the contextual relationship of the input fea-
tures and assigns attention weights to each input (11). In
general, attention mechanisms improve the performance of
deep learning models and increase the interpretability of
the models. More recently, attention mechanisms have been
applied to cancer genomics for cancer driver gene detec-
tion (12), drug response prediction (13) and base editing
outcome prediction (14). For example, the genomic impact
transformer (GIT) model utilizes a self-attention mecha-
nism to encode the effects of somatic alterations in cancer
and uses multi-layer perceptrons to predict differentially ex-
pressed genes (12). The attention mechanism enables GIT
to select driver mutations that are likely to lead to down-
stream phenotypes. However, the GIT model lacks inter-
pretability in the sense that it does not model intermediate
TFs during modeling signaling from somatic alterations to
gene expression programs.

Here, we present Chromatin-informed Inference of
Transcriptional Regulators Using Self-attention mecha-
nism (CITRUS), a partially interpretable neural network
model with encoder-decoder architecture. CITRUS links
somatic alterations to transcriptional programs by model-
ing the statistical relationships between mutations, CNVs,
gene expression, and TF-target gene information derived
from ATAC-seq (Figure 1). We show that CITRUS yields
important biological insights into dysregulated TFs in indi-
vidual tumors. Using a systematic in silico knock out ap-
proach, we identified key TFs associated with major so-
matic alterations. We believe CITRUS will assist researchers
in providing actionable hypotheses for follow-up experi-
ments and developing personalized and targeted therapeu-
tics in a pan-cancer setting.

MATERIALS AND METHODS

Data pre-processing

We downloaded the batch normalized RNA-Seq ex-
pression levels quantified by RNA-Seq by Expectation
Maximization (RSEM) from the Genomic Data Com-
mons (GDC) portal (https://gdc.cancer.gov/about-data/
publications/pancanatlas. We log2-transformed RSEM val-
ues and identified the 2500 most variable genes across sam-
ples within a cancer type. Then, we took the union of the

identified genes across cancer types. The final gene set in-
cluded 5541 genes.

We obtained processed gene-level somatic alterations for
each cancer patient from Cai et al. (4). Genes with non-
synonymous mutations, small insert/deletion, or somatic
copy number alteration (deletion or amplification) were
given a value of 1, and otherwise were given a value of 0.
We removed genes that were not present in at least 4% of
samples for each cancer type.

We downloaded the ATAC-seq pan-cancer dataset
from the GDC portal (https://gdc.cancer.gov/about-data/
publications/ATACseq-AWG) (10).

We obtained SILAC-based quantitative phosphopro-
teomic data set of a spontaneously immortalized non-
tumorigenic breast epithelial cell line MCF10A along with
two isogenic derivatives generated by knock-in of mutant
alleles––one bearing the E545K mutation and the other
bearing the H1047R mutation of the PIK3CA gene––from
the originally published Supplementary Data (15). We also
obtained human protein microarray-based AKT1 kinase
assays from the originally published Supplementary Data
(15).

Creating TF-target gene matrix

To construct a binary TF-target gene matrix across cancer
types, we started with an atlas of chromatin accessible re-
gions derived from all tumor types (∼200K peaks) based
on ATAC-seq pan-cancer dataset (10). Therefore, this prior
matrix was not tissue specific. We represented every gene
by its feature vector of TF motif binding presence, where
motif information was summarized across all promoters,
intronic, and intergenic chromatin accessible sites assigned
to the gene. Briefly, using the MEME (16) curated cis-BP
(17) TF motif binding reference, we scanned the pan-cancer
ATAC-seq peak atlas with FIMO (18) to find peaks likely
to contain each motif (P < 10−5). We filtered TFs that were
not expressed in at least 50% of samples in at least one of
the seventeen tumor types. Further, similarity of predicted
target peak sets was measured using the Jaccard index (size
of intersection/size of union). If two TFs had a high Jac-
card index (>0.5), we looked at the mean Jaccard index of
each TF with all other TFs, and we removed the TF with the
largest mean Jaccard index. The final set contained 320 TF
binding motifs. Then, we associated each peak to its nearest
gene in the human genome using the ChIPpeakAnno pack-
age (19). ATAC-seq peaks located in the body of the tran-
scription unit, together with the 100 kb regions upstream of
the transcription start site (TSS) and downstream of the 3′
end, were assigned to the gene. We converted the assigned
ATAC peaks for each gene to a feature vector of motif bind-
ing signals by assigning the maximum score of each motif
across all peaks to a gene. The final TF-target gene matrix C
∈ {0,1}k×l contains a candidate set of associations between
TFs and target genes. Ci,j = 1 when there is a connection
from TF j to the gene i (red lines connecting the TF layer
and target gene expression (Exp) layer in Figure 1).

CITRUS model

CITRUS is a framework for modeling impact of somatic
alterations on transcriptional programs through the latent
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Figure 1. Overview of CITRUS: An attention-based model with TF-target gene priors. The input to our framework includes somatic alteration and
copy number variation, assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), tumor expression datasets and TF
recognition motifs. CITRUS takes somatic alteration and copy number variation data as input and encodes them as a tumor embedding using a self-
attention mechanism. Cancer type embedding is used to stratify the confounding factor of tissue type. The middle layer further transforms the tumor
embeddings into a TF layer, which represents the inferred activities of 320 TFs. Finally, gene expression levels are predicted from the TF activities through
a TF-target gene priors constrained sparse layer based on ATAC-seq.

hidden status of the tumor. Figure 1 shows the model ar-
chitecture with an overall encoder and decoder structure.
Somatic gene alteration inputs with >20K dimensions were
encoded into a compressed representation as tumor embed-
ding. Then the tumor embedding, which represents the sta-
tus of the tumor, was decoded to a large dimension data of
gene expression. The encoder-decoder architecture allows
the model to capture key features of the high dimension in-
puts and reduce the data noise as well.

In the encoder module of the CITRUS model, each mu-
tant gene is mapped into the gene embedding, and aggre-
gated together with cancer type embedding to form the
tumor embedding through weighted sum. Like ‘word em-
bedding’ in the natural language processing (NLP) field,
our gene embedding represents each distinct somatic al-
teration with a particular continuous number vector such
that somatic alteration that share similar biological func-
tions are located close to each other in embedding space,
which is a Euclidean space. It captures the functional simi-
larity among somatic alterations perturbing common path-
ways. Our pre-trained gene embedding was derived from
the gene2vec method based on the co-occurrence informa-
tion of somatic alterations, which utilized the skip gram
word2vec algorithm based on the context-target word pairs.
If two mutant genes co-exist with a third gene in similar
pattern, they tend to share similar gene embeddings. In the
CITRUS model, we uploaded the pre-trained gene embed-
ding and further updated/finetuned it under the supervision
of mRNA profile. From the point of the implementation,
we created embedding space only for somatic alterations of
each tumor, so that the sparse high dimension vector of tu-
mor somatic alterations ( >10k) was converted into a dense

2d array with smaller dimensions N × M, N is the maxi-
mal number of gene mutations/copy number events of each
tumor (∼1000); M is the embedding size (512). This conver-
sion also set up the foundation for self-attention mechanism
which in turn to feeds into our attention weight analyses.

Cancer type embedding acts in a similar way by convert-
ing each cancer type into a vector, then merging with gene
embedding to form a personalized tumor embedding. The
added cancer type information provides additional guid-
ance for the model training in a multi-cancer type data set-
ting and further improves the prediction performance and
shortens the training time for the model to converge (see
the Supplementary Figure 1). The condensed tumor embed-
ding, which comprises the attention-weighted gene embed-
ding, and the specified cancer type embedding served as a
highly informative entry point for the multi-layer percep-
tron decoder from which derived our transcriptional factor
activities.

We design a self-attention mechanism which assigned
importance weights to input features (somatic alterations)
through the model training. Formally, given a specific tu-
mor t, with the cancer type s, we have a set of somatic al-
terations in the tumor {gu}m

u = 1 where m is number of mu-
tant genes. The encoder module first maps each gene g (it is
gu here, but we omit the subscript for notation simplicity)
into its corresponding gene vector eg. Then, the encoder
utilizes the multi-head self-attention mechanism to calcu-
late the weighted sum of both the gene embeddings and the
cancer type embedding:

et = es + α1e1 + α2e2 + α3e3 + . . . + αmem
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The self-attention mechanism takes the gene embeddings of
all mutated/altered genes as an input and outputs the atten-
tion weights {αu}m

u = 1 through a sub-neural network. To be
more specific, in the case of single-head attention mecha-
nism, we first calculate the unnormalized attention weights
{βg, j }m

g = 1:

βg, j = θT
j tanh

(
W0eg

)
, g = 1, 2, . . . , m.

where θ j is the single-head parameter. Then we normalize
the attention weights:

α1, j , α2, j , . . . , αm, j = sof tmax
(
β1, j , β2, j , . . . , βm, j

)
.

In the case of multi-head attention mechanism, we have
parameters for multiple heads {θ j }h

j = 1. The final attention
weights are the sum of single head weights:

αg = αg,1 + αg,2 + . . . + αg,h, g = 1, 2, . . . , m

The attention mechanism captures the context of co-
existing somatic alterations and their complex interactions,
which is lost in simpler models. Interested readers can find
the mathematical details of self-attention mechanisms in the
cited reference (12).

In the decoder module of CITRUS, we first infer the TF
activities from the encoded tumor embedding et:

e f = tanh
(
Wf et + b f

)
.

We used tanh activation instead of ReLU operation, which
is more widely used in deep learning, because it has simi-
lar performance to that of ReLU in our model and gener-
ates more biologically meaningful results (e.g., distribution
of TFs e f ). Finally, CITRUS predicts cancer type-specific
mRNA expression from TF activities:

ŷ = We f + br

where W corresponds to the sparse TF–target gene ma-
trix constrained by the prior C ∈ {0, 1}k×l . More specifi-
cally, to integrate priors into our model, W shares the same
shape with prior C, and Wi, j is allowed to be nonzero only
when Ci, j = 1, and Wi,j is constrained to be non-negative
value. We use mean square loss function as: MSE(y, ŷ). The
TF–target gene matrix contains the binary constraints that
element-wisely define the sparse connections between TFs
and potential target genes. During the training of model,
only non-zero part of the parameters is allowed to be back-
propagated and updated. The rest part of the weight param-
eters are always zero values throughout the training and in-
ference.

One might use other common approaches to integrate
prior C into the W, i.e. by applying a Gaussian prior to W,
which is equivalent to adding an additional penalty to the
loss function

∑

i, j :Ci, j =0
(W)2

i, j . However, this ‘soft’ constraint

tends to generate less stable TF layers across different runs
of training compared to the ‘hard’ constraints shown in our
model.

To prevent overfitting and to increase robustness to
noise, we introduced additional dropout operations with a
dropout rate of 0.2 after the input layer, activated tumor
embedding layer, and activated TF layer.

Training and evaluation

We implemented CITRUS through the PyTorch package
(https://pytorch.org/), and training was performed using the
Adam optimizer with default parameters except for the
learning rate (15) and weight decay. We set the learning rate
to 1 × 10−3 and the weight decay to 1 × 10−5. We used
early stopping with patience of 30 steps to stop training.

For statistical evaluation, we computed the mean Spear-
man correlation (ρ) between predicted and measured gene
expression profiles for each tumor. We held out 20% of sam-
ples as the testing set with stratified splitting, preserving the
percentage of samples for each cancer type (Supplementary
Table 1). The remaining 80% of samples were used for train-
ing and validation to determine the optimal hyperparame-
ters of the model. For hyperparameter setting, we did 5-fold
cross validation by stratified data splitting into 5-fold. Each
fold was used for validation after training on the other 4-
fold. We utilized mean of the performance over all runs to
decide the optimal values of hyperparameters such as the
learning rate and batch size. Then, we applied the trained
model with selected hyperparameters to the testing set for
performance evaluation. To increase the stability of inferred
TF activity analysis, we assembled multiple CITRUS mod-
els trained with different random initialization state and in-
tegrated the TF layer based on the average of 10 trials.

Parameter selection: CITRUS includes >10 hyperparam-
eters that are described in the following paragraphs. These
hyperparameters were tuned for optimal performance in the
validation set. Ideally, hyperparameter optimization is per-
formed using a grid search of all parameters. However, this
is not practical due to the tremendous computational cost.
For example, three options for each parameter leads to 310

possible combinations for just 10 parameters. In addition,
we guide the performance metric by k-fold cross-validation,
and the total experiments necessary would be 5 × 310 (k
= 5). Therefore, our hyperparameter tuning strategy com-
bined automatic and manual tuning. First, we created em-
pirical settings for each parameter and randomly selected
a set of parameters from 100 combinations. We utilized
the best-performing settings to narrow down the prelimi-
nary decisions and correlation among parameters. Then, we
tuned parameters independently or in sub-groups manually
or by grid search.

Model robustness: The learning rate is perhaps the most
important hyperparameter in neural network training. We
first tested the learning rate in a range of settings [10−5,
10−4, 10−3, 10−2 . . . ], starting with the lowest setting and
progressing to larger values until validation loss started to
diverge. We found that if the learning rate was too small,
overfitting occurred and picked up input noise. Addition-
ally, overfitting reduced the number of driver genes that
were covered in downstream attention weight analyses. If
the learning rate was too big, however, the model could not
converge to an optima and yielded higher validation loss.
Ultimately, we selected learning rates of 10−3 and 10−4 and
applied a weight penalty (weight decay) to find an optimal
combination of settings. We set the weight decay range from
10−6 to 10−4 and performed a grid search. The optimal set-
tings for learning rate and weight decay were determined to
be 10−3 and 10−5, respectively. Although large batch sizes
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can accelerate learning rates and training, our experiments
indicated that a learning rate of 10−3 was the largest value
that maintained validation accuracy when tested on increas-
ing batch sizes (16, 64, 100 and 300, which is the maximum
value that could run in GPU). We found that larger batch
sizes tended to have slightly higher gene-wise correlation at
the cost of longer training time. To balance execution time,
we selected a batch size of 100. The early stopping patience
setting is also related to the learning rate and batch size.
Specifically, higher learning rates and larger batch sizes re-
quire smaller patience to stop training. Higher patience set-
tings may otherwise cause overfitting. Using our selected
learning rate and batch size settings, a patience of 30 was
generally sufficient to maintain training without stopping
too early (underfitting) due to fluctuation and without halt-
ing too far from the optima (overfitting). We validated a pa-
tience setting of 30 by comparing it with a case of overfit-
ting. We selected the lowest loss point in the overfit train-
ing and measured how far it was from the model with early
stopping. During early stages of training, the model showed
an initial drop in validation performance followed by a rise.
To avoid this inconsistency, we did not apply early stop-
ping for the first 180 test steps. To test the attention mech-
anism, we created a mesh grid for two attention sizes (256,
128) and four attention head settings (32, 16, 8, 4). We then
performed an exhaustive grid search within these settings.
Based on prediction performance, we selected 256 and eight
as the optimal values for attention size and attention head,
respectively.

Finally, we fine-tuned our model by adjusting the
dropout rate. Because we used weight decay for regulariza-
tion, dropout is considered a secondary regularization for
our model. In addition to hidden layer dropout, we also ap-
plied dropout to our input to reduce input noise and net-
work redundancy and to generate a more stable hidden TF
layer. We tested a sequence of five dropout rates (0.1, 0.2,
0.3, 0.4, 0.5). All dropout rate settings yielded performances
above 0.9 for average sample correlation in the testing set.
We determined the dropout rate optimal value (0.2) primar-
ily based on driver gene coverage in self-attention analy-
ses.

As we used an early stopping mechanism, we set the max-
imum iteration parameter to 1000. This setting ensures that
the training process stops either once the patience setting is
satisfied or once the maximum iterations is reached. Code
testing and quick runs were performed with a maximum it-
eration of one.

We tested two activation functions: ’ReLU’ and ’tanh’.
Although both activation functions performed similarly,
’tanh’ generated more biologically meaningful results and
was selected. We also tested l2, minimax and standard nor-
malization (scale) to normalize gene expression and found
that scale normalization generated the best prediction accu-
racy for our model settings.

Training the affinity regression (AR) models

AR is an algorithm for efficiently solving a regularized bi-
linear regression problem (20–23) and was defined in our
model as follows. For a data set of M tumor samples profiled
using RNA-seq with N genes, we let Y∈RNxM be the log10

gene expression profiles of tumor samples. Each column
of Y corresponds to an RNA-seq experiment for a cancer
type. We define the TF attributes of each gene in a matrix D
∈RNxQ, where each row represents a gene, and each column
represents a TF vector. The TF vector indicates whether
there is a binding site for the TF on each gene based on
ATAC-seq data. We define the somatic alteration attributes
of tumor samples as a matrix P ∈RMxS where each row rep-
resents a tumor sample, and each column represents the so-
matic alteration status for the tumor sample. We set up a
bilinear regression problem to learn the weight matrix W
∈RQxS on paired TF and somatic alteration features:

DWPT ∼ Y

We can transform the system to an equivalent system of
equations by reformulating the matrix products as Kro-
necker products:

DWPT ≈ Y ⇔ (P ⊗ D)vec (W) ≈ vec (Y)

where ⊗ is a Kronecker product, and vec is a vectorizing
operator that stacks a matrix and produces a vector. The
result of this system is a standard (if large-scale) regression
problem. Full details and a derivation of the reduced op-
timization problem are provided elsewhere (21). For statis-
tical evaluation, we separated datasets by cancer type and
conducted 5-fold cross-validation to tune hyperparameters
in the training and validation sets as we performed in CIT-
RUS setting.

In silico knockout analysis

We implemented an in silico knock out approach that re-
moves a specific somatic mutation (or copy number vari-
ation) g from all the tumor samples that carry it. The new
somatic alteration profiles and the CITRUS-inferred TF ac-
tivities generate a ‘wild type’ corpus that does not contain
the alteration g. In contrast, the original samples containing
the alteration g serve as the ‘mutant/altered’ group. We then
conducted t-tests between the mutant and wild type groups
to evaluate the impact of mutation g. This approach cap-
tures the contextual effects of mutations through the non-
linear attention module of CITRUS and provides a con-
trolled experimental environment that holds all mutations
constant except for mutation g. For complex genotypes, the
model explains TF activity across tumors. We then cor-
rected for multiple hypotheses across models, treating in-
ferred TF activities as separate groups of tests.

Association score between TF activity subtypes and frequent
somatic alterations

For each somatic mutation or copy number variation, we
calculated the P-value of its frequency in a cancer subtype
compared to other subtypes using Fisher’s exact test. The
P-value was further adjusted through FDR across subtypes.
To identify the relative frequency of a somatic alteration in a
subtype, we defined an association score, which is the prod-
uct of the relative frequency direction and −log10FDR.
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Statistical analysis

Statistical tests were performed with the R statistical envi-
ronment (4.0.2) and Python. For population comparisons
of inferred TF activities, we performed Student’s t-tests and
determined the direction of shifts by comparing the mean
of the two populations. We corrected raw P-values for mul-
tiple hypothesis testing based on two methods: Bonferroni
and FDR (BH method).

RESULTS

Pan-cancer modeling of transcriptional programs

To systematically interpret somatic alterations within
context-specific transcriptional programs and to identify
disrupted TFs that drive tumor-specific gene expression pat-
terns across multiple cancer types, we developed CITRUS
(Figure 1, see Materials and Methods for details). CITRUS
traces biological signaling from somatic alterations to sig-
naling pathways, to TFs, and finally to target gene expres-
sion (mRNA levels). To enable this tracing, CITRUS em-
ploys an encoder-decoder architecture. The encoder mod-
ule compresses input somatic alterations into a latent vector
variable called a tumor embedding. The decoder predicts
TF activities from the tumor embedding and then predicts
target gene expression. More intuitively, the model learns
the flow of information from somatic alterations to altered
activity of TFs to their transcriptional changes in target
genes.

We applied this approach to 17 tumors from TCGA and
identified key TFs associated with somatic alterations. Our
dataset included samples from 17 different tumor types for
which mRNA, somatic mutation and copy number varia-
tion data were available. ATAC-seq data were available for
subset of patients: bladder urothelial carcinoma (BLCA,
n = 371, nATAC-seq = 10), breast cancer (BRCA, n = 719,
nATAC-seq = 75), cervical squamous cell carcinoma and en-
docervical adenocarcinoma (CESC, n = 267, nATAC-seq =
4), colorectal adenocarcinoma (COAD, n = 271, nATAC-seq
= 41), esophageal carcinoma (ESCA, n = 170, nATAC-seq =
18), glioblastoma multiforme (GBM, n = 143, nATAC-seq =
9), head and neck squamous carcinoma (HNSC, n = 475,
nATAC-seq = 9), kidney renal cell-clear carcinoma (KIRC, n =
357, nATAC-seq = 16), kidney renal papillary cell carcinoma
(KIRP, n = 272, nATAC-seq = 34), liver hepatocellular car-
cinoma (LIHC, n = 336, nATAC-seq = 17), lung adenocarci-
noma (LUAD, n = 459, nATAC-seq = 22), lung squamous cell
carcinoma (LUSC, n = 430, nATAC-seq = 16), pheochromo-
cytoma and paraganglioma (PCPG, n = 109, nATAC-seq = 9),
prostate cancer (PRAD, n = 449, nATAC-seq = 26), stomach
adenocarcinoma (STAD, n = 373, nATAC-seq = 21), thyroid
carcinoma (THCA, n = 216, nATAC-seq = 14), and uterine
corpus endometrial carcinoma (UCEC, n = 361, nATAC-seq
= 13).

For statistical evaluation, we computed the mean Spear-
man correlation and mean squared error (MSE) between
predicted and measured gene expression profiles on the test-
ing set (see Materials and Methods). CITRUS achieved sig-
nificantly better performance than a regularized bilinear re-
gression algorithm called affinity regression (AR) (21–24)
that was trained independently for each cancer type and ex-

plain gene expression across tumors in terms of somatic al-
teration status and presence of TF motif binding sites based
on a pan-cancer ATAC-seq atlas (Figure 2A and Supple-
mentary Table 2). We also observed better prediction per-
formance with models built using cancer type embedding
compared to without cancer type embedding (Supplemen-
tary Figure 1). Moreover, models built without cancer type
took ∼1.7× time longer to coverage than the cancer type
model.

To identify somatic alterations that influenced gene ex-
pression programs, we compared the relationship of over-
all attention weights (inferred by CITRUS) and the fre-
quencies of somatic alterations (used as the control group)
across all cancer types and within each cancer type (Fig-
ure 2B and Supplementary Figure 2). In general, atten-
tion weights were positively correlated with the frequency
of somatic alteration. For example, the top altered genes
TP53 and PIK3CA had high attention weights. How-
ever, our self-attention mechanism assigned low attention
weights to many frequently altered genes. We also ob-
served a few infrequently altered genes with high atten-
tion weights. For example, the H3K4 methyltransferase
KMT2C had a high attention weight in BRCA but was in-
frequently altered. Indeed, KMT2C is a key regulator of
ER� activity and anti-estrogen response in breast cancer
(24,25).

We found genes with high attention weights were en-
riched for known cancer drivers using the IntOGen9

database. We first grouped all the genes into two parts with
the threshold of 2 (log(attention + 1) ≥ 2 as the more at-
tended group, and log(attention + 1) < 2 as the less at-
tended group). Using Fisher’s exact test, we verified that
known cancer driver genes were enriched in the highly at-
tention group (P = 4.48 × 10−41) in the pan-cancer analy-
sis. We further examined driver enrichment using the fre-
quently mutated genes. We found the frequently mutated
genes with lower attention weight were not significantly en-
riched in cancer drivers (P > 0.05, Fisher’s exact test) unlike
frequently mutated genes with higher attention weight (P
< 0.05, Fisher’s exact test) Briefly, we selected the top 100
frequently mutated genes and divided them into two groups
(high attention and low attention group) by several different
separation thresholds (Supplementary Table 3). For each
threshold split, we conducted driver enrichment analyses
on these two groups respectively with Fisher’s Exact test. It
consistently shows that the high attention group has a sig-
nificant driver enrichment (P < 0.05) while the low attention
group does not (P > 0.05).

We used CITRUS to infer patient-specific TF activities
across tumor types. Clustering tumors by these inferred TF
activities largely recovered the distinction between major
tumor types (Figure 2C). Interestingly, samples with squa-
mous morphology components (BLCA, CESC, ESCA,
HNSC and LUSC) clustered together. Tumors with tissue
or organ similarities or proximity were also clustered to-
gether. These included neuroendocrine and glioma tumors
(GBM and PCPG), clear cell and papillary renal carcino-
mas (KIRC and KIRP), a gastrointestinal group (COAD,
and STAD), and breast and endometrial cancer (BRCA and
UCEC). We also observed similar clustering of the tumor
embeddings (Supplementary Fig. 3).

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkac881/6761738 by guest on 16 O

ctober 2022



Nucleic Acids Research, 2022 7

Figure 2. CITRUS models the impact of somatic alterations on gene expression programs. (A) Performance of CITRUS in each cancer type compared to
the regularized bilinear regression method Affinity regression (Affreg). Boxplots show the mean Spearman correlations between predicted and actual gene
expression based on CITRUS (orange) and Affreg (light blue) in TCGA datasets for each cancer type. Both CITRUS and Affreg were tuned on the same
training and validation sets and evaluated on the same testing set. (B) Somatic alteration frequencies and CITRUS-inferred attention weights of genes.
Cumulative pan-cancer results are shown on the left, and individual BRCA and HNSC results are shown in the middle and on the right, respectively. See
Supplementary Fig. 1 for complete results from each cancer type. (C) Principal component analysis (PCA) of TF activity colored by cancer type. Standard
TCGA tumor symbols are used to indicate tumor type.

Next, we assessed TF–tumor type associations by t-test
and compared inferred TF activities between samples in
each tumor type versus those in all other tumor types. We
corrected for false discovery rate (FDR) across TFs and
identified significant shared and cancer-specific TFs, which
are listed in Supplementary Data 1. The average TF activ-
ity and significance of the four most significant TFs in each
cancer are shown in Figure 3. Our results highlight both
known and novel cancer-specific TF regulators. For exam-
ple, FUBP1, which regulates c-Myc gene transcription, had
significantly higher inferred activity in many cancer types,
including LIHC, HNSC, BLCA, ESCA, CESC, LUSC,
PRAD, BRCA and UCEC. Consistent with previous re-
ports, IRF3 activity was significantly higher in GBM (26).
KLF8 had decreased activity in GBM, LIHC and KIRC,
which is consistent with its role in suppressing cell apop-
tosis during tumor progression (27). Additionally, YY1,
which regulates various developmental processes (28), had
increased activity in CESC and COAD.

Cancer subtype identification from CITRUS-inferred TF ac-
tivity and somatic alterations

Next, we asked whether CITRUS could identify cancer sub-
types based on the TF activity associated with somatic al-
terations. We conducted k-means clustering of inferred TF

activities for each cancer type to define subtypes, and then
we conducted hierarchical clustering of both the cancer
subtypes and TF activities. Figure 4 shows the clustering
of subtypes by CITRUS-inferred mean TF activities and
corresponding somatic alteration associations (see Meth-
ods). We observed major differences in mean TF activities
across cancer types and minor but significant differences
within cancer types. Variations within a cancer type may
arise from distinct mutation or CNV profiles of subgroups.
For example, clustering by TF activities revealed subclasses
of CESC enriched with KRAS mutations; KIRC enriched
with VHL, BAP1, PBRM1 and TP53 mutations; LIHC en-
riched with CTNNB1, BAP1 and TP53 mutations; THCA
enriched with NRAS, HRAS and BRAF mutations; and
PCPG enriched with HRAS mutations (multiple hypothesis
corrected Fisher’s exact test P-value < 0.05).

As our goal was to decipher cancer-specific downstream
effects of targeted therapies and to discover secondary tar-
gets for combination drug strategies, we developed a sys-
tematic statistical approach for modeling the impact of so-
matic alterations on TF activity. We implemented an in sil-
ico knock out approach that removes a specific somatic mu-
tation (or CNV) g from all carrier tumor samples in each
TCGA cancer study and then predicts altered TF activity
(see Methods). Using this approach, we were able to iden-
tify TFs whose inferred activity was significantly dysregu-
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Figure 3. CITRUS identifies regulatory features of tumor types. Dot plot shows the mean inferred TF activity differences between samples in a given tumor
type versus those in all other tumor types by t-test. We corrected for FDR across TFs for each pairwise comparison and identified significant TFs. The
complete results are included in Supplementary Data 1. The dot size indicates −log10(FDR). For clarity, the union of the top four significant TFs in each
cancer type is shown.
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Figure 4. Landscape of somatic alterations and inferred TF activities. (A) Heatmap shows tumor subtypes clustered by mean inferred TF activity. The
color scale is proportional to TF activity. (B, C) Heatmaps of association scores for (B) mutations and (C) copy number variations. Association scores were
calculated by multiplying the −log10 FDR by the direction derived from Fisher’s exact test.
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lated by somatic alterations in known cancer driver genes.
Figure 5A demonstrates TF activities that were associated
with somatic alterations in UCEC. CITRUS identified mu-
tations in PIK3CA, PTEN, KRAS, TP53 and CTNNB1
that were significantly associated with various TF activities
across UCEC tumors (∼66% of tumors have PTEN inac-
tivating mutations, ∼50% have PIK3CA activating muta-
tions, ∼38% have TP53 mutations, ∼26% have CTNNB1
mutations, and ∼20% have KRAS mutations). UCEC sam-
ples with PTEN mutations were mutually exclusive with
TP53, CTNNB1, and KRAS mutations and showed dis-
tinct TF activity patterns. Mutations in PTEN that inacti-
vate its phosphatase activity result in increased PI3K signal-
ing. Consistent with this effect, TFs associated with PTEN
mutations were involved in cell cycle and differentiation,
including E2F5, TP63, ELF3, DBP, ZKSCAN3, LHX2,
HOXB6, SOX9, DBP, MYLB1 and GLIS1. TFs associated
with CTNNB1 mutant status were involved in WNT and
TGF-beta signaling including TCF7, TCF7L2, TCF7L1,
FOXH1, EMX1 and MYBL1.

Similarly, CITRUS identified TF activities that were as-
sociated with somatic alterations in BRCA (Figure 5B).
Mutations in PIK3CA, PTEN, MAP2K4, GATA3, TP53
and CDH1 were significantly associated with various TF
activities. In BRCA, ∼36% of tumors have PIK3CA acti-
vating mutations, ∼35% have TP53 mutations, ∼15% have
GATA3 mutations, ∼15% have CDH1 mutations, ∼10%
have PTEN mutations, and ∼7% have MAP2K4 muta-
tions. Activating mutations in PIK3CA often occur in one
of three hotspot locations (E545K, E542K and H1047R)
and promote constitutive signaling through the pathway.
TFs associated with PIK3CA mutations were involved in
WNT signaling, epithelial–mesenchymal transition, and
cancer stem cell transition, including ELF3, TFEC, STAT4,
STAT5B, NFATC1, GLIS1, CDC5L and AR. We also
examined protein microarray-based AKT1 kinase assay
and SILAC-based phosphoproteomic data from isogenic
knock-in breast cell lines harboring mutations of PIK3CA
(15). Of 20 TFs represented in the phosphoproteomic data
associated with mutant PIK3CA, 16 of them associated
with PIK3CA mutation in our analysis (Supplementary Ta-
ble 4). Moreover, of the seven TFs identified as AKT sub-
strates, six of them were associated with PIK3CA muta-
tion in our analysis (FDR-adjusted P-value < 0.05) (Sup-
plementary Table 5).

BRCA samples with PIK3CA and TP53 mutations
were mutually exclusive, and our in silico knock out
analysis associated distinct TFs with these mutations.
TP53 mutant tumors were associated with increased
activity of TFs that have roles in tumor growth, such as
ETS2 and FOSB, growth modulation, such as THAP1,
CREB3L1 and CEBPZ, and development, such as
MEF2C/D, MEOX1 and MSX1. We performed similar
analyses for other cancer types (Supplementary Figure 4).

Although the TFs affected by some somatic alterations
differed between cancer types, mutation of TP53 was asso-
ciated with similar TFs across cancer types (Supplementary
Figure 5). TP53 is one of the most frequently inactivated tu-
mor suppressor genes that suffers from missense mutations
in human cancer. These missense mutations result in the ex-
pression of a mutant form of p53 protein. We observed that

inferred TP53 activity was lower when TP53 was mutated
compared to wild type for most cancer types (Supplemen-
tary Figure 6). Mutant p53 protein can disable other tumor
suppressors (e.g. p63 and p73) or enable oncogenes, such
as ETS2 (29). Indeed, the inferred TF activity of ETS2 was
higher in mutant versus WT TP53 tumors across cancers
(Figure 5C); however, these differences were not as signifi-
cant at the gene expression level (Supplementary Figure 7).
We also observed significant upregulation of motif-based
targets of ETS2 based on ATAC-seq relative to all genes in
the TCGA tumor data excluding GBM (P-value < 1e−6,
Kolmogorov–Smirnov test, Supplementary Figure 8) con-
sistent with our analysis.

DISCUSSION

Analysis of the regulatory network in tumor datasets is
challenging due to the complexity of the cancer genome
(e.g. aneuploidy, CNVs, structural variation, and muta-
tions). CITRUS provides a systematic framework for inte-
grating regulatory genomics with tumor expression and so-
matic alterations to better understand how expression pro-
grams are affected by somatic alterations in cancers and
to infer patient-specific TF activities. Our method uses a
deep learning framework called a self-attention mechanism
to capture the complex contextual interactions between so-
matic alterations. For a more accurate representation of TF-
target gene relationships, we leveraged ATAC-seq tumor
data from TCGA patients. CITRUS is designed to capture
the flow of information from altered genes (e.g. signaling
proteins) to TFs to target genes, and our in silico knock out
analysis predicts the causal impact of somatic alterations.
Joint modeling across different tumor types also revealed
patient subgroups associated with somatic alterations.

The key advantage of the CITRUS model is that it en-
ables the detection and representation of the functional im-
pact of somatic alterations on transcription factors, which
in turn enables detection of common mechanisms of tumors
even if tumors host different somatic alteration. Further,
a specific mutated gene usually contains a specific type of
mutations, so in a lot of cases, the mutated gene is already
very informative of the mutation types. In cases where a so-
matic alteration is associated with the activity of a targetable
TF or their upstream/downstream component the knowl-
edge of putative downstream positive and negative effec-
tors can aid in the identification of combination therapies.
For example, one could perform shRNA or CRISPR/Cas
screening of downstream TFs to identify those whose
knockdown/deletion leads to reduced/enhanced prolifera-
tion. This mechanistic information could inform the devel-
opment of combination therapies, e.g. by selecting agents
known to alter activity of these specific TFs.

One limitation of the TF binding motif approach utilized
by CITRUS is that TFs of the same family often share a sim-
ilar motif and thus are difficult to disambiguate. Therefore,
TF motifs may encompass the activities of multiple TFs.
Moreover, co-binding TF binding patterns (e.g. AP-1−IRF
complexes) can be biologically meaningful for gene expres-
sion and are not currently represented in our model. Fu-
ture models will work to represent these composite elements
as features. Another limitation is that we do not represent
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Figure 5. Somatic alterations are associated with dysregulated TF activity. Impact of somatic alterations on individual TFs based on in silico knock out
experiments in (A) UCEC and (B) BRCA datasets from TCGA. The dot plot shows mean TF activity, and dot size indicates –log10(FDR). Vertical axis
are mutations and horizontal axis are TFs associated with at least on the mutations. The experiment and control groups are whether the mutation present
or not in the patient. To evaluate the impact of mutations on TF activities, we conducted Student’s t-test on the two groups. See Supplementary Figure 4
for the full list of cancer types. (C) Inferred ETS2 activity in TCGA studies and impact of TP53 mutations. Tumors with mutant TP53 have significantly
higher ETS2 activity than WT tumors (P < 0.01, t-test). This association is not significant using mRNA levels of ETS2 (Supplementary Figure 6). Box
edges represent the upper and lower quantile with median value shown as a bold line in the middle of the box. Whiskers extend to 1.5 times the quantile.

directionality in the TF–target gene priors (i.e. whether a
gene is activated or repressed by a TF). Prior knowledge
of whether the TF is acting as an activator or as a repres-
sor would add meaningful interpretation to inferred TF
activities. These limitations may confound the interpreta-
tion of the activity of TFs with context-specific activator
and repressor roles. Further, regulatory network analysis
of tumor datasets is also complicated by the presence of
stromal/immune cells within the tumor and the heterogene-
ity of the cancer cells themselves. However, our framework
can be extended to model single-cell RNA-seq or deconvo-
luted RNA-seq via computational methods.

Despite these limitations, modeling the impact of somatic
alterations on transcriptional programs may ultimately en-
able the development of individualized therapies, aid in
understanding mechanisms of drug resistance, and allow
the identification of biomarkers of response. We anticipate

that computational modeling of transcriptional regulation
across different tumor types will emerge as an important
tool in precision oncology, aiding in the eventual goal of se-
lecting the best therapeutic option for individual patients.

DATA AVAILABILITY

ATAC-seq data are available in the public repository Ge-
nomic Data Commons (https://gdc.cancer.gov/about-data/
publications/ATACseq-AWG). RNA-seq gene expression,
somatic mutation, copy number variation, and clinical
data are available in a public repository from TCGA’s
Firehose data run (https://confluence.broadinstitute.org/
display/GDAC/Dashboard-Stddata). Only the samples
‘whitelisted’ by TCGA for the Pan-Cancer Analysis Work-
ing Group were used in the study. For our analysis, we only
used samples with parallel RNA-seq, somatic mutation,
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and GISTIC copy number data. Processed input and output
files have been made available at the supplementary website
for the paper: https://sites.pitt.edu/∼xim33/CITRUS.

CODE AVAILABILITY

The software for CITRUS is available at https://github.com/
osmanbeyoglulab/CITRUS.
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Supplementary Data are available at NAR Online.
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