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Phenotype

Signaling and transcriptional response
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• Cancers are caused by the perturbations of multiple pathways and transcriptional regulatory programs



Pan-cancer modeling of regulatory programs 

• Similar TFs may be dysregulated across cancers
• Similarities between cancer types can inform new therapies
• Extensive training data from more common tumor types also compensates for smaller sample sizes in similar 

but rarer cancers (e.g. pheochromocytoma and paraganglioma; PCPG)
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KA Hoadley et al. Cell. 2018.



Modeling non-linear relationships

• Effects of upstream alterations not equal, e.g., 
cancer drivers vs. passengers

• Complex interactions between genes, e.g., mutual 
exclusivity

• Role of genomic alterations is context specific

• Attention mechanism!
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https://www.intogen.org



Attention mechanism

• A deep learning method to assign importance weights to input features
• Widely used in Computer Vision/Natural Language Processing
• Computed in a contextual manner
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J Cheng et al. EMNLP. 2016.S Woo et al. ECCV. 2018.



Datasets/Approach: Modeling impact of somatic alterations on gene expression 
programs
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Approach: interpretable deep learning

• CITRUS
• Chromatin-informed Inference of Transcriptional Regulators Using Self-attention mechanism
• Self-attention mechanism
• Sparse connections constrained by ATAC-seq prior
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Pan-cancer data sources
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Datasets Summary
ATAC-seq 410 tumors
Bladder (BLCA) 371 tumors
Breast (BRCA) 719 tumors
Cervical and endocervical (CESC) 267 tumors
Colon (COAD) 271 tumors
Esophageal (ESCA) 170 tumors
Glioblastoma (GBM) 143 tumors
Head and Neck (HNSC) 475 tumors
Kidney renal clear cell (KIRC) 357 tumors
Kidney renal papillary cell (KIRP) 272 tumors
Liver hepatocellular (LIHC) 336 tumors
Lung adenocarcinoma (LUAD) 459 tumors
Lung squamous (LUSC) 430 tumors
Pheochromocytoma and Paraganglioma (PCPG) 109 tumors
Prostate (PRAD) 449 tumors
Stomach (STAD) 373 tumors
Thyroid (THCA) 216 tumors
Uterine corpus endometrial (UCEC) 361 tumors

The Cancer Genome Atlas Research Network (TCGA)
MR Corces et al. Science. 2018.



ATAC-seq identifies shared and unique epigenetic landscape across cancers
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TF motif prediction in ATAC-seq peak regions 

MR Corces et al. Science. 2018.



CITRUS better predicts gene expression in held-out tumors compared 
to bilinear models
• Affinity regression (bilinear) vs. CITRUS (deep learning)
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R Pelossof et al. Nature Biotech. 2015.
HU Osmanbeyoglu et al. Nature Comm. 2017.



Overall attention weights

• Impacts of somatic alterations
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PAN-CAN BRCA HNSC



Clustering based on inferred TF activity largely recovered the distinction 
between the major tumor types 
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Landscape of mutations and inferred TF activities
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Association score := direction*-log10(FDR)
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Impact of mutations on TFs in breast cancer

• Knock out in silico: different from t-test, simulates the knockout of mutations
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Impact of PIK3CA mutation on TFs in breast cancer
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Z Zhang et al. Mol Med Rep. 2018.
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Impact of TP53 mutation across cancers
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LA Martinez. Front Oncol. 2016.
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Conclusion and future work

• CITRUS: deep learning approach modeling transcriptional programs in pan-cancer
• Utilize self-attention mechanism to capture non-linear effects of mutations
• Integrate ATAC-seq as knowledge base

• Further explore potential clinical relevance
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