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Abstract

Motivation: Cancer develops and progresses through a clonal evolutionary process. Understanding progression to
metastasis is of particular clinical importance, but is not easily analyzed by recent methods because it generally
requires studying samples gathered years apart, for which modern single-cell sequencing is rarely an option.
Revealing the clonal evolution mechanisms in the metastatic transition thus still depends on unmixing tumor subpo-
pulations from bulk genomic data.

Methods: We develop a novel toolkit called robust and accurate deconvolution (RAD) to deconvolve biologically
meaningful tumor populations from multiple transcriptomic samples spanning the two progression states. RAD
uses gene module compression to mitigate considerable noise in RNA, and a hybrid optimizer to achieve a robust
and accurate solution. Finally, we apply a phylogenetic algorithm to infer how associated cell populations adapt
across the metastatic transition via changes in expression programs and cell-type composition.

Results: We validated the superior robustness and accuracy of RAD over alternative algorithms on a real dataset,
and validated the effectiveness of gene module compression on both simulated and real bulk RNA data. We further
applied the methods to a breast cancer metastasis dataset, and discovered common early events that promote
tumor progression and migration to different metastatic sites, such as dysregulation of ECM-receptor, focal adhe-
sion and PI3k-Akt pathways.

Availability and implementation: The source code of the RAD package, models, experiments and technical details
such as parameters, is available at https://github.com/CMUSchwartzLab/RAD.

Contact: russells@andrew.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Breast cancer is the second most common cause of death in women
(Lin et al., 2004), with metastasis the dominant mechanism by
which breast cancer results in mortality (Riihimäki et al., 2018).
Although the overall survival of breast cancer patients has improved
substantially in recent decades, there are usually limited treatment
options once metastasis has occurred (Guan, 2015). Understanding
how tumors evolve, and especially how they evolve across the meta-
static transition, is thus crucial in further understanding and pre-
venting cancer mortality.

Cancers develop through a process of clonal evolution, in which
populations of genetically distinct tumor cells evolve and adapt
functionally coordinate with interaction with various non-cancerous
stromal cell populations (Beerenwinkel et al., 2016). Metastasis
occurs when a population of tumor cells escape normal controls on

cell growth, migrate to a distant site and successfully establish them-
selves in that site and continue to develop (Riihimäki et al., 2018).
Because of its medical importance, the metastatic transition has
been the focus of intensive prior study (Nguyen et al., 2009). It is
particularly important to understand this process at a clonal level if
we wish to identify those tumors at particular risk for metastasis
and find markers and potential therapeutic targets specific to their
metastatic clones (Tao et al., 2019a).

Previous research has revealed multiple recurrent features com-
mon to breast cancer metastasis, such as dramatic perturbations in
the PI3K-Akt, RET and ErbB pathways based on the paired tran-
scriptome of breast primary and brain metastatic sites (Priedigkeit
et al., 2017b; Vareslija et al., 2018). Methods for tumor phyloge-
netics (Schwartz and Schäffer, 2017), i.e. inference of evolutionary
trees on tumor cell populations, have proven powerful for character-
izing genomics of progression processes, including in metastatic
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progression. Past research has shown that deconvolution and phylo-
genetic methods allow one to infer evolutionary trajectories in breast
cancer brain metastases from either bulk genomic or transcriptomic
alterations (Brastianos et al., 2015; Körber et al., 2019; Tao et al.,
2019b). However, much remains unknown, including whether one
can reliably identify those clones most susceptible to metastasis and
whether the premetastatic genomics of these clones or their subse-
quent evolutionary trajectories influence their eventual metastatic
sites (brain, ovary, bone and gastrointestinal tract).

Much of the current advances in tumor phylogenetics are coming
from single-cell sequencing technologies, such as single-cell RNA-
Seq (scRNA) and single-cell DNA-Seq (scDNA), which allow one to
characterize clonal heterogeneity with precision (Navin, 2015). In
practice, though, these kinds of data are rarely available for matched
primary and metastatic samples. Such studies depend on analyzing
paired samples generally gathered years apart, where primary
tumors are generally archived and no longer amenable to single-cell
analysis. While rapid autopsy studies (Alsop et al., 2016) are begin-
ning to recruit cohorts in which data can be gathered promptly at
both initial diagnosis and mortality, the difficulty of recruiting sub-
jects and cost of gathering comprehensive single-cell data makes it
still prohibitive to gather paired single-cell data for reasonable sizes
of study cohort. In contrast, matched bulk data, e.g. RNA-Seq of
both breast primary and metastatic samples, are easier to acquire
when one or both samples have been archived (Zhu et al., 2019).
Inferring clonal evolution from paired archived samples is thus still
dependent on an older class of method that sought to study cancer
at the clonal level through deconvolution (unmixing) of genomic
data from bulk samples (Beerenwinkel et al., 2005).

Here we build on our past work in developing deconvolution
methods for understanding the metastatic transition (Tao et al.,
2019b). Our contributions in this work are twofold.
Methodologically, we proposed and developed a tool kit called ro-
bust and accurate deconvolution (RAD), the core algorithm of
which takes bulk RNA as input, and infers the expressions and pro-
portions of groups of associated tumor cells, which we denote cell
communities. We refer readers to Section 2.2 and Section 3.3 for the
major novelty and advancement of RAD, and the differences be-
tween RAD and previous deconvolution algorithms such as NMF
(Lee and Seung, 2000), Geometric Unmixing (Schwartz and
Shackney, 2010), LinSeed (Zaitsev et al., 2019) and NND (Tao
et al., 2019b). We show that RAD can automatically identify correct
numbers of cell populations and identify perturbed biomarkers, such

as cancer pathways. We validated its superiority over alternative de-
convolution algorithms through comprehensive validations on both
simulated and real datasets. Biologically, we applied the RAD algo-
rithm to transcriptomic data from matched breast cancer primary
and metastatic samples (Basudan et al., 2019; Priedigkeit et al.,
2017a,b; Zhu et al., 2019), extending our prior analysis of brain me-
tastasis specifically (Tao et al., 2019b) to consider variations across
multiple metastatic sites. We further applied a refined phylogeny in-
ference algorithm to trace the evolutionary trajectories from the pri-
mary tumor to different metastatic sites (Tao et al., 2019b). Our
analysis showed that although the breast tumors of different meta-
static types encompass heterogeneous and distinct cell populations,
there exist common patterns of perturbed pathways detected at the
early stage of primary breast cancer, suggesting that our framework
might shed light on early diagnostic and treatment options.

2 Materials and methods

2.1 Overview
Figure 1 illustrates the general approach for unmixing bulk RNA
from paired breast cancer metastatic samples and inferring underly-
ing tumor evolutionary processes. To reduce the noise of bulk RNA,
we first compress the expression levels of individual genes into the
modules using external knowledge bases (Fig. 1a; Section 2.2.2). We
then apply a novel RAD algorithm to unmix the compressed expres-
sion data into expression profiles and fractions of individual cell
communities (Fig. 1b; Section 2.2). Finally, we infer the evolution-
ary trajectories of the unmixed tumor communities. We then analyze
perturbed biomarkers, such as activity of cancer-related regulatory
pathways, during tumor metastasis (Fig. 1c; Section 2.3).

Note that our overall goal is to deconvolve tumor cell commun-
ities (Tao et al., 2019b), as opposed to necessarily single cells, and
describe their evolution across the metastatic transition. A cell com-
munity is defined as one or more cell types with potentially distinct
expression profiles that share common mixture proportions across
samples, indicative of their possible interaction or coassociation in
the tumor. For example a set of immunogenic tumor clones and the
immune cell types infiltrating them may form a community exhibit-
ing an overall expression pattern that is a mixture of those of its con-
stituent cell types. Although our deconvolution algorithm can
identify correct numbers of distinct clones when they are mixed in
distinct proportions in different samples (Section 3.2), it is more
proper to interpret results as describing cell communities when the

Fig. 1. Illustration of discovering underlying cancer evolutionary mechanisms of metastatic progression using the proposed computational models. (a) Gene module compres-

sion. Genes from the same modules have similar coexpression patterns. By mapping the individual genes into modules, we can get a cleaner representation of bulk RNA data.

(b) Deconvolution of bulk RNA. Using the RAD algorithm, we unmixed the bulk data into two matrices: expression matrix and fraction matrix, which represent the expres-

sion profile and fractions of individual cell populations. (c) Phylogeny inference of cell communities. The inferred phylogeny represents the most likely evolutionary trajectories

of cell populations
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sample size is small or when tumor cells may associate or coevolve
with their stroma (Beerenwinkel et al., 2016).

2.2 RAD: toolkit for robust and accurate deconvolution
We proposed and developed the toolkit called RAD. RAD is a set of
tools that solves the problem of (i) estimating the number of cell
communities from bulk RNA, (ii) unmixing the cell communities
from bulk data and (iii) inferring other biomarkers such as pathways
from the deconvolved communities. Table 1 shows an example of
applying RAD to a common RNA deconvolution problem.

RAD is different from the traditional non-negative matrix factor-
ization (NMF; Lee and Seung, 2000) widely used in this problem do-
main. First, RAD considers a biologically meaningful unmixing
problem (Section 2.2.1), which has additional constraints that make
it much harder to solve than the general NMF problem. Although
there exist many NMF variants that consider different regulariza-
tions, such as NMF with ‘1-norm (Shen et al., 2014) and sparseness
(Hoyer, 2004), these NMF algorithms mainly consider the prior of
data distribution instead of the biological feasibility. As far as we
know, the only algorithm that solves this specific deconvolution
problem is our gradient descent-based NND method (Tao et al.,
2019b). Algorithms derived from the widely used multiplicative up-
date (MU) rules do not necessarily guarantee the convergence or ac-
curacy in this new scenario (Lei et al., 2020a,b), a problem that
RAD tackles by using a hybrid solver. Second, NMF is fragile since
the unmixed matrices may be distinct given a different initialization
seed. In contrast, RAD uses both the prior knowledge of gene mod-
ules and the minimum similarity criteria to generate robust and reli-
able output. Finally, RAD is a toolkit that aims to resolve a series of
problems in the deconvolution of bulk RNA, whereas NMF mainly
focuses on optimizing the objective function efficiently.

2.2.1 Deconvolution problem formulation

Given a non-negative bulk RNA-Seq expression matrix B 2 R
m�n
þ ,

where each row i is a gene, each column j is a tumor sample, our
goal is to infer an expression profile matrix C 2 R

m�k
þ , where each

column l is a cell community, and a fraction matrix F 2 R
k�n
þ , such

that: B � CF. To be more concrete, we formulated the problem, as
in our prior work (Tao et al., 2019b), as follows:

min
C;F

kB� CFk2
Fr; (1)

s:t: Cil � 0; i ¼ 1; . . . ;m; l ¼ 1; . . . ; k; (2)

Flj � 0; l ¼ 1; . . . ; k; j ¼ 1; . . . ; n; (3)

Xk

l¼1

Flj ¼ 1; j ¼ 1; . . . ; n; (4)

where jjXjjFr is the Frobenius norm. The column-wise normalization
of Equation (4) ensures that the total fractions of all cell commun-
ities in the same sample sum up to one. This optimization problem is

non-convex and non-trivial to resolve. In addition, the bulk data B

is noisy, so even an optimal solution does not necessarily fit the
ground truth C and F. Our overall approach to solve for this prob-

lem consists of three phases—a randomized warm-start procedure
to develop an initial guess as to a solution, coordinate descent opti-

mization to improve fit to the objective, and a minimum similarity
selection procedure to identify the most informative partitioning
among a set of random restarts—as described in more detail below.

2.2.2 Knowledge-driven gene module compression

By default, RAD unmixes the raw expression matrix C directly.
However, gene module compression (compress_module) is a sug-
gested option if we have prior information on what genes belong to

the same gene modules. Gene expressions within the same gene
modules are highly correlated, which can be explained by their

shared genomic context, similar biological functions, or participa-
tion in the same interaction network (Tao et al., 2020). Intuitively,
we can compress the noisy expressions of individual genes into

cleaner ‘gene modules’ (Desmedt et al., 2008; Park et al., 2009), to
reduce the signal-to-noise ratio (SNR).

Here we utilize the functional annotation clustering tool in
DAVID to group the top 3000 most varied genes into around
100–200 modules (Huang et al., 2009), where multiple external

knowledge databases are used to facilitate the clustering. The gene
expressions within the same module are averaged to get the module

expression value. The resulting bulk compressed module matrix is
BM 2 R

m1�n
þ , where m1 is the total number of modules.

The gene module compression in our work is knowledge-driven,
which is reliable even when only limited tumor samples are avail-
able, in contrast to prior work using data-driven clustering of coex-

pressed genes (Zaitsev et al., 2019), which is more dependent on
large sample sizes. We validate the superiority of knowledge-driven

compression over data-driven compression on a real dataset (Fig. 4b
and e), and the effect of such knowledge-driven compression
(Fig. 4d and e) in Section 3.3.

2.2.3 Core algorithm of RAD

The core algorithm of RAD (estimate_clones) unmixes the com-

pressed bulk RNA data BM into expression profiles CM and frac-
tions F of individual communities. The method works in three

phases—warm-start, coordinate descent and minimum similarity se-
lection—to achieve accuracy and robustness. RAD can directly
unmix the original bulk RNA data B as well, and we will remove

the subscript M in this section for simplicity.
Warm-start The warm-start phase borrows its idea from the MU

rules for the general NMF problem (Lee and Seung, 2000). It first
randomly initializes C and F from the uniform distribution U(0, 1)

then iterates the following loop until the objective function
converges:

C C� ðBF>Þ � ðCFF>Þ; (5)

F F� ðC>BÞ � ðC>CFÞ; (6)

Flj  Flj =
Xk

l0¼1

Fl0 j; l ¼ 1; . . . ; k; j ¼ 1; . . . ;n; (7)

where � and � are element-wise product and element-wise division
operators. We add an additional MU step, Equation (7), to the ori-

ginal two MU steps, Equations (5) and (6), to satisfy the constraint
Equation (4). This deteriorates the convergence guarantee of the ori-
ginal MU rules. Therefore, we have to stop the update once the ob-

jective stops decreasing. However, the revised MU rules in the
warm-start phase still have the advantage of fast convergence even

when the initial values of C and F are far from optimal solution, and
can provide a reasonable starting point for the second phase.

Table 1. Functions in the RAD package

Function Demo code

compress_module B_M ¼ compress_module(B, module)

estimate_number k ¼ estimate_number(B_M)

estimate_clones C_M, F ¼ estimate_clones(B_M, k)

estimate_marker C_P ¼ estimate_marker(B_P, F)

C ¼ estimate_marker(B, F)

Note: The five-line demo shows a typical application of RAD package,

which takes as input the bulk RNA data B, bulk marker data BP and gene

module knowledge, and outputs deconvolved RNA C, biomarker CP, and

fractions F.
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Coordinate descent After the warm-start phase, the coordinate
descent phase optimizes over the two coordinates C and F iteratively
until the objective function converges:

C arg min
C

kB� CFk2
Fr; (8)

s:t: Cil � 0; i ¼ 1; . . . ;m; l ¼ 1; . . . ;k; (9)

and

F arg min
F

kB� CFk2
Fr; (10)

s:t: Flj � 0; l ¼ 1; . . . ; k; j ¼ 1; . . . ;n; (11)

Xk

l¼1
Flj ¼ 1; j ¼ 1; . . . ; n; (12)

Although the original optimization problem, Equations (1–4), is
non-convex, the two subproblems of the coordinate descent are con-
vex and can be solved using general quadratic programming. We
used the Python package cvxopt (Andersen et al., 2011). The coord-
inate descent phase can usually further reduce the loss function by
around 5–30% after the warm-start phase, as evaluated on a real
dataset GSE19830 (Section 2.5.2; Shen-Orr et al., 2010).

Minimum similarity selection Since the deconvolution problem,
Equations (1–4), is non-convex, different initialization values of C
and F may converge to distinct solutions. We reran the initialization,
warm-start and coordinate descent for multiple times (10 in our
experiments) and selected the solution with minimum similarity of
expression profiles. We defined the unnormalized cosine similarity
of a specific solution C as:

cosimðCÞ ¼
Xk�1

l¼1

Xk

l0¼lþ1

C>�l C�l0 : (13)

Biologically, the use of minimum similarity is motivated by the
assumption that individual cell communities should be distinct from
each other. Minimum similarity performs slightly better than min-
imum loss on GSE19830 dataset, although the two criteria often
overlap empirically.

2.2.4 Estimating number of communities

The core algorithm of RAD infers the C and F from B given a specif-
ic number of communities k, which in practice is unknown to us in
advance. RAD estimates the number of cell components (estimate_
number) through cross-validation (CV). The estimated/optimal k
reflects the trade-off between model bias and the variance.

We take a 20-fold CV as an example: In each fold, 5% of the ele-
ments in B are unseen at the time of training/optimization. At the
time of test, the loss is calculated only on these unseen 5% elements.
Technically, we realized it by utilizing the mask matrices with the
same shape of B: M;Mtest 2 f0;1gm�n (M is Mtrain. We omit the
subscript train for simplicity.), and MþMtest ¼ 1m�n. Bij is blocked
when the corresponding position of Mij ¼ 0. In each fold, 5% of the
Mtest are 1’s, and 95% of the M are 1’s. Note that the positions of
the 1’s and 0’s are randomly distributed across the whole matrices
M and Mtest, rather than column-wise or row-wise.

At the time of validation, we can calculate the ‘normalized MSE’
as the CV error on validation set:

kMtest � ðB� ĈF̂Þk22=kMtest � Bk2
2 (14)

At the time of training, we want to optimize the following ob-
jective function with the same constraints to Equations (2–4):

min
C;F

kM� ðB�CFÞk2
Fr: (15)

There exist corresponding algorithms for MU warm-start and
coordinate descent phases when a mask M exists. The MU rules to
optimize the masked objective, Equation (15), is similar to

Equations (5–7). However, Equations (5) and (6) are revised to the
following rules:

C C�
�
ðM� BÞF>

�
�
��

M� ðCFÞ
�

F>
�
; (16)

F F�
�

C>ðM� BÞ
�
�
�

C>
�

M� ðCFÞ
��
: (17)

The coordinate descent iterations of the masked version are the
same to the unmasked version, Equations (8–12), except that ðB�
CFÞ in Equations (8) and (10) are replaced with M� ðB� CFÞ. The
subproblems of the two masked coordinate descent steps are still
quadratic programming problems.

2.2.5 Cancer-related pathway annotation

We further processed the bulk data to derive aggregate biomarkers
profiling activity of cancer-related pathways. Although this is not
part of the RAD toolkit, we make use of bulk biomarkers and esti-
mates of their activity in individual cell components (Section 2.2.6)
to interpret the results of the RAD. We extracted 24 cancer-related
pathways and the corresponding genes from the pathways in cancer
(hsa05200), breast cancer (hsa05224) and glioma (hsa05214) of the
KEGG database (Kanehisa and Goto, 2000). The value of each path-
way is the average expression of all genes within it. We mapped the
original bulk gene matrix B into the cancer pathway probes matrix
BP 2 R

24�n
þ . Readers can find the list of pathways in Figure 5.

Cancer pathways are distinct from gene modules, which capture
the major variance across samples and the coexpression patterns
using prior knowledge to facilitate more reliable deconvolution.
However, coexpression modules are often weakly linked to biologic-
al functions and not informative for downstream analysis. In con-
trast, biomarkers such as cancer-related pathways facilitate
functional interpretation of results. We did not use cancer-related
pathways or other biomarkers for deconvolution, since they are not
representative of the expression profiles.

2.2.6 Pathway estimation of cell communities

Given the bulk cancer pathway data BP, RAD utilizes the decon-
volved F to infer the pathway values of cell populations CP (estima-
te_marker), similar to the paradigm of the Digital Sorting Algorithm
(DSA; Zhong et al., 2013), by replacing B and C with BP and CP in
Equations (8) and (9). The unmixed C or CM may not be easy to in-
terpret. However, other biomarkers, such as cancer pathways, pro-
vide a possible way to explain the biological process of each cell
community, and can be used as input to infer the phylogeny and per-
turbed pathways during progression (Section 2.3).

2.3 Phylogeny inference through minimum elastic

potential
Given the deconvolved cell clone profiles C 2 R

n�k
þ of k cell compo-

nents, we inferred trees describing the observed extant and unobserved
ancestral Steiner communities. We use the term ‘phylogeny’ to refer to
these trees to highlight their connection to tumor phylogenetics meth-
ods often used for similar purposes and on similar data (Schwartz and
Schäffer, 2017), although we recognize that these trees describe
changes in mean transcriptomic states of groups of associated cells ra-
ther than strictly clonal evolution and thus are not proper phylogenies.

RAD works in the original non-log linear space, which recovers
underlying components with higher accuracy and lower bias (Zhong
and Liu, 2012). In the phylogeny inference algorithm, however, we
instead used the log space to focus on the fold change of expressions
C log 2ðCþ 1Þ. We also normalize the expression to make them
have zero mean value for each gene.

We used a variant of the minimum elastic potential (MEP)
method to infer the phylogeny structure and expression values of
Steiner nodes (Tao et al., 2019b). Taking C as input, the MEP first
builds the phylogeny tree that includes k extant nodes and ðk� 2Þ
ancestral Steiner nodes using the neighbor-joining algorithm
(Nei and Saitou, 1987). To identify the perturbed biological

i410 Y.Tao et al.



processes and gene expression during tumor evolution, MEP infers
expression values of the unknown Steiner nodes by minimizing an
‘elastic potential energy’. For a specific pathway or gene, this is
equivalent to a quadratic programming problem:

min
x

1

2
x>PðWÞxþ qðW; yÞ>x; (18)

where x 2 R
k�2; y 2 R

k are the expression values of Steiner and ex-
tant nodes; PðWÞ is a function that takes as input the tree edge
weightsW and outputs a matrix P 2 R

ðk�2Þ�ðk�2Þ; qðW; yÞ is a func-
tion that takes as input edge weights W and vector y and outputs a
vector q 2 R

k�2. We further added an ‘2-regularization kIðk�2Þ�ðk�2Þ

to the PðWÞ. In practice we use k ¼ 0:001, which helps more stable
inference when the total number of nodes is large. Interested readers
can find detailed problem formulation, derivatives and proofs of
MEP in the previous work (Tao et al., 2019b).

Although we used the notation C for the explanation in this section,
in our application, we used the pathway probes CP to infer the cancer
pathway values of each Steiner nodes for downstream interpretation.

2.4 Evaluation
The deconvolution algorithm outputs both the estimated expression

profiles Ĉ and the fractions F̂ of each cell communities. We utilized
four different metrics to measure the accuracy and error of the two
estimators with the ground truth C and F following previous research

(Newman et al., 2015; Zaitsev et al., 2019; Zhu et al., 2018): R2
C

(Pearson coefficient of Ĉ and C), L1 loss (kĈ � Ck1=kCk1), R2
F

(Pearson coefficient of F̂ and F), MSE (Mean square error of F̂ and F).

2.5 Datasets and preprocessing
We utilized three datasets throughout this work: one real dataset of
breast cancer metastasis (BrM; Zhu et al., 2019); one real dataset of
both pure and mixed transcriptome of liver, brain and lung
(GSE19830; Shen-Orr et al., 2010); and one simulated dataset. All
three datasets contain bulk transcriptome B, which is the input of
RAD and downstream analysis. Ground truths C; F are only avail-
able in simulated and GSE19830 datasets, and unknown in BrM
dataset. Ground truth module knowledge of genes are only available
in simulated dataset, GSE19830 and BrM datasets instead used
DAVID to infer gene module.

2.5.1 Simulated dataset

We simulated a series of datasets with different parameters of mod-
ule size (1, 2, 4,. . ., 512) and noise level r 2 ½0; 5	 to validate the ef-
fectiveness of RAD and module compression. We selected most of
the parameters following Zaitsev et al. (2019), with selected param-
eters consistent with the distribution of the real dataset GSE19830.

We considered the expression of 2048 interested genes and
assumed three pure cell clones C 2 R

2048�3
þ . In the case where each

module consists of just one gene, C was drawn from a log-normal
distribution independently (Bengtsson, 2005):

Cil 
 2Nð6;2:5
2Þ; i ¼ 1;2; . . . ; 2048; l ¼ 1;2; 3: (19)

We assumed that genes from the same module are highly corre-
lated and prone to coexpress. When module size is greater than one,
e.g. there are four genes in a module, for each gene module CS 2
R

4�3
þ (a subblock of C), we draw each gene module as follows:

ðCSÞ�l 
 2Nð½6;6;6;6	
> ;2:52RÞ; l ¼ 1; 2;3; (20)

where R is the covariance matrix of four genes in the module:

R ¼

1 0:95 0:95 0:95
0:95 1 0:95 0:95
0:95 0:95 1 0:95
0:95 0:95 0:95 1

2
664

3
775: (21)

We assumed 100 mixture samples of bulk RNA, and drew the
fractions of mixture samples uniformly from a unit simplex:

F�j 
 U½D3	; j ¼ 1; 2; . . . ; 100; (22)

Finally, we added the noise of magnitude r to get the final bulk
data:

Bij 
 ðCFÞij þ 2Nð0;r
2Þ; i ¼ 1;2; . . . ; 2048; j ¼ 1;2; . . . ;100: (23)

2.5.2 GSE19830 dataset

GSE19830 contains RMA-normalized Affymetrix expressions of
cells from rat brain, liver and lung biospecimens (Shen-Orr et al.,
2010). It mixed the three pure tissues in different predefined propor-
tions, leading to 33 mixture samples. Expression profiles of each
pure and mixed sample were measured three times.

We removed the non-protein coding genes, conducted quantile
normalization and took the average of three replicates. This yielded
three matrices for the GSE19830 data: expression profiles of the
three pure clones C 2 R

13741�3
þ , fractions of three clones in all mix-

ture data F 2 R
3�33
þ and bulk data B 2 R

13741�33
þ .

2.5.3 BrM dataset

The BrM dataset contains matched transcriptome data of breast
cancer metastasis patients (Zhu et al., 2019). There are 102 samples
from 51 patients in total. There are four possible different metastatic
sites for each breast cancer patient in the dataset: brain (BR; 22
patients), ovary (OV; 13 patients), bone (BO; 11 patients) and
gastrointestinal tract (GI; 5 patients). A sample from the primary
breast site has a matched sample from the metastatic site of the same
patients. RNA-Seq of around 60 000 genes are available. We will
denote the sample from the metastatic site and the corresponding
primary site as MBR/PBR, MOV/POV, MBO/PBO, MGI/PGI. We
removed the non-protein coding genes and conducted quantile nor-
malization to get the final bulk data: B 2 R

19689�102
þ .

3 Results

3.1 Gene modules facilitate robust deconvolution
RAD can act directly on the bulk gene expression B or on the
knowledge-based compressed bulk gene module expression BM

(Section 2.2.2). We validated that the gene module compression is
beneficial to RAD through both simulated data and real datasets.

As a proof of concept, we first assume the knowledge of gene
modules is correct and known to us. We generated simulated bulk
data with a noise level r¼4 and various module sizes from 1 to 512
(Section 2.5.1). We calculated four metrics to evaluate the accuracy
of RAD estimation on these data, and repeated all experiments 100
times (Fig. 2). A moderate module size of 32 makes RAD the most
accurate (highest median accuracy) and robust (smallest variance),
which is helpful to deconvolution. RAD is less robust (high variance)
on the original uncompressed bulk gene data (module size of one).
However, when module size is too large, RAD has both inaccurate
and unstable performance. We refer interested readers to
Supplementary Figure S1 for a more comprehensive result on the
effects of both module size and noise level on RAD performance.

We further examined whether the module knowledge from
DAVID generates a reasonable module size and facilitates robust
RAD deconvolution. We applied RAD to both the uncompressed
and compressed GSE19830 dataset. As shown in Figure 4d, e, mod-
ule compression based on DAVID improve the RAD estimation of
both C and F.

We could not directly validate the effectiveness of DAVID com-
pression on unmixing the BrM dataset, but we found the gene mod-
ule representation informative for separating primary and metastatic
samples (Supplementary Fig. S2).
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3.2 RAD detects the correct number of cell components
RAD utilizes CV to identify the number of underlying cell popula-
tions (Section 2.2.4). To validate its correctness, we applied a 20-
fold CV to the GSE19830 data. As shown in Figure 3a, the CV
error, Equation (14), drops quickly when the number of cell compo-
nents k increases from one to three, and flattens after k goes over
three. In this case, we identify the correct number of cell clones to be
three (Although k ¼8 gives minimum CV error, it is due to the small
noise or artifacts in the samples.).

For the BrM dataset, we applied a 20-fold CV as well and found
the CV error drops when k is smaller than seven, and increases with
substantial variance because of overfitting when k is higher than
seven. We therefore used k¼7 as the number of communities in the
BrM data. Previous research using a subset of the BrM dataset (only

breast cancer brain metastasis samples) identified only five cell pop-
ulations (Tao et al., 2019b). With a larger sample size, and more
heterogeneous data, we can identify more fine-grained unmixed cell

communities.

3.3 RAD estimates cell populations robustly and

accurately
We then evaluated the accuracy and error of RAD relative to alter-
native deconvolution algorithms. There are many algorithms to
solve the ‘partial deconvolution’ problem, where the expression pro-
files of clones C are available at the time of deconvolution, e.g. DSA
(Zhong et al., 2013). For tumor samples, however, the underlying
cell types are often unknown, and partial deconvolution can be

Fig. 2. Effectiveness of gene module representation. Compressing the expression of individual genes into gene modules can promote more robust deconvolution with proper

module size. We tested on the simulated bulk data with the noise level of r¼ 4, and repeated all the experiments for 100 times to get the boxplot. We evaluated four metrics

that measure the accuracy of deconvolution with different gene module sizes. Note that ‘module size’ of one is equivalent to the original gene expression without module com-

pression. (a) Accuracy of expression matrix estimation: R2
C. (b) Error of expression matrix estimation: L1 loss. (c) Accuracy of fraction matrix estimation: R2

F. (d) Error of frac-

tion matrix estimation: MSE

Fig. 3. Cross-validation to automatically select the number of cell communities. We conducted a 20-fold cross-validation to infer the optimal number of cell component k as

the input of RAD algorithm. (a) Cross-validation on GSE19830 dataset. The actual number of cell clones is three. (b) Cross-validation on BrM dataset. The inferred number of

cell components is seven, which is used as the input parameter for Figures 5–7
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unstable. We consider the ‘complete deconvolution’ problem here
(Zaitsev et al., 2019), where the expression profiles of populations
C are not available and must be inferred.

There are a few existing algorithms that seem to be suitable for
the complete deconvolution problem, e.g. principal components

analysis (PCA), independent components analysis (ICA) and NMF.
However, none of these algorithms account for the fraction normal-
ization constraints, Equation (4), and PCA and ICA do not guaran-
tee the non-negativity of expression profiles, Equation (2). A few
more well-designed algorithms have been developed for the specific

Fig. 4. Performance of different deconvolution algorithms on GSE19830 dataset. We compared the accuracy of both estimated C and F across four different deconvolution

algorithms. RAD with the module achieves best the performance among all the deconvolution algorithms evaluated in R2
C ; R2

F, and MSE. The module information facilitates

the RAD to achieve better performance. (a) Geometric Unmixing. (b) LinSeed. (c) NND (with module). (d) RAD (with gene). (e) RAD (with module)

Fig. 5. Cancer-related pathway strengths of each cell component from BrM dataset. The strengths are shown in log-scale log 2ðCP þ 1Þ
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complete deconvolution problem, including Geometric Unmixing
(Schwartz and Shackney, 2010), LinSeed (Zaitsev et al., 2019) and
NND (Tao et al., 2019b):

• Geometric Unmixing: It poses unmixing as a problem from com-

putational geometry by assuming all the bulk samples are located

in a simplex, where the corners of the simplex represent the ex-

pression profiles of pure clones.
• LinSeed: Based on the observation that genes in the same module

are highly correlated to each other. It first identifies these anchor

genes through linear correlation. Then it uses a partial deconvo-

lution algorithm DSA to infer the fractions F and expressions of

non-anchor genes C (Zhong et al., 2013).
• NND: It converts the complete deconvolution problem equiva-

lently into an optimization problem, which can be implemented

as a neural network. It uses backpropagation (gradient descent)

to optimize.

For RAD, we can directly take as input the bulk gene expression
matrix B (Fig. 4d), or use the more noise-free bulk module expres-
sion matrix BM (Fig. 4e). Although the NND can also take B or BM

in principle, we only included results of ‘NND w/Module’ (Fig. 4c),
due to the intractable training time of ‘NND w/Gene’.

Figure 4 compares the performance of the five deconvolution
algorithms and module-compressed variants on the GSE19830 data-
set. The gene module compression improves the accuracy of RAD
significantly (Fig. 4d and e), consistent with the observations in
Figure 2. The RAD on the compressed module data outperforms the
other three algorithms in metrics R2

C; R2
F and MSE (Fig. 4a–c and e).

It also has comparable L1 loss with the ‘NND w/Module’ algorithm
(Fig. 4c and e). These results reveal the superiority and accuracy of
the RAD algorithm and module compression.

The elevated accuracy and robustness of RAD over competing
algorithms is crucial for downstream analyses such as phylogeny in-
ference. For example RAD reveals a more detailed portrait of per-
turbed pathways (Section 3.5) during metastasis than our previous
NND algorithm (Tao et al., 2019b).

3.4 Landscape of tumor cell communities
We derived the fractions of cell communities in each sample F using
RAD, and further inferred the pathway values of each cell commu-
nity from BP and F (Section 2.2.6). Although there exists inter-
tumor heterogeneity across cancer samples, RAD aims to separate
the shared features of cell populations across these tumors from
sample-specific features as in prior cross-cohort deconvolutional
phylogeny studies (Roman et al., 2015; Schwartz and Shackney,
2010) and prior oncogenetic tree methods that do not include a de-
convolution step (Desper et al., 2004; Riester et al., 2010).

Expression profiles of cell communities Figure 5 shows the path-
way values of each cell population in log scale log 2ðCP þ 1Þ after
applying RAD to the BrM dataset. C5 is the most abnormal commu-
nity, having lost half of the pathways completely (almost zero ex-
pression), including PI3K-Akt, ECM-receptor and Calcium.
Another unusual cell community is C2, which is specifically enriched
in neurotransmitter and calcium homeostasis functions (Calcium
and cAMP; Hofer and Lefkimmiatis, 2007). We hypothesize that C2
might reflect a cell community combining both neural cells and
metastatic tumor cells. In contrast, C6, which we infer to approxi-
mate the primary breast tumor community, has a relatively high ex-
pression of PI3K-Akt (Brastianos et al., 2015) and immune function
(Cytokine-cytokine receptor; Zhu et al., 2019).

Distribution of cell communities Figure 6 shows the distribution
of cell components across different metastatic sites. We classified the
tumor sites into eight categories: MBR/PBR, MOV/POV, MBO/
PBO and MGI/PGI (Section 2.5.3). We observe that C6 is always
decreased in the metastatic samples, from which we infer it may ap-
proximate the primary clones and capture features that distinguish
primary clones from metastatic ones in general. Other components
are increased in specific metastasis types. For example C1 in OV

and BO; C2 in BR, OV and GI; C3 in BR, OV and GI; C4 in BO; C5
in BR, OV and BO; and C7 in BR. This indicates that there exist dif-

ferent cell population mixtures in different metastatic sites, likely in
part reflecting site-specific stroma but also revealing commonalities
across metastatic sites. We further note that the distribution of cell

clones across primary sites is related to their eventual sites of metas-
tasis. This result is suggestive that there may be a signal in the pri-
mary clonal composition of whether a primary tumor is likely to

metastasize to a particular site, although that suggestion requires
further evaluation and validation.

We do not know the ground truth cell populations in the BrM
dataset. Given that the component C3 mainly exists in the GI sam-

ples (Fig. 6), though, we would predict that removing the GI samples
would decrease the optimal number of components from 7 (Fig. 3b)
to 6, which is indeed the case (Supplementary Fig. S3).

3.5 Common evolutionary mechanisms of breast cancer

metastasis
Using the unmixed cell clones CP, we built a phylogeny and inferred
the pathway values of Steiner nodes using the MEP algorithm

(Section 2.3). Since there are vast differences across the four metas-
tasis types (Fig. 6), we inferred a phylogeny tree for each metastasis
type (Fig. 7a–d; Supplementary Tables S1–S4). We presented C6 as

the common root node, as it consistently decreases in all four metas-
tasis types, and identified the communities whose average fractions

increase in the metastatic communities of specific metastasis types.
Figure 7 shows the top five most differentially expressed pathways
for more than onefold along each edge.

As shown, there are common patterns at the early stage of metas-
tasis, e.g. the decrease of PI3K-Akt, ECM-receptor interaction and

focal adhesion. The loss of PI3K/Akt/mTOR in metastatic tumors
has already been identified in brain metastasis research based on
both genomic and transcriptomic data (Brastianos et al., 2015; Tao

et al., 2019b). Our result indicates the loss of PI3K-Akt pathway is
a common event among the general metastasis types as well, not lim-

ited to brain metastasis. Loss of ECM-receptor interaction and focal
adhesion also plays a critical role in tumor cell migration generically
(Nagano et al., 2012). Tumor cells adhere to the extracellular ma-

trix (ECM), forming the structures called focal adhesions and loss of
these interactions is a key step in enabling metastatic migration.

There are also substantial differences across metastatic sites that
may suggest potential markers of incipient site-specific metastasis.

The dysregulation of some perturbed pathways have already been
shown to be closely related to tumor progression (Hedgehog,
Apoptosis; Gupta et al., 2010). RET and ErbB have been shown re-

currently perturbed in metastasis (Priedigkeit et al., 2017b). The re-
duction of Cytokine-cytokine receptor may reflect the reduced
immune cell recruitment in metastatic samples (Zhu et al., 2019).

Fig. 6. Fractions of communities in both primary and metastatic sites of four differ-

ent metastasis types from BrM dataset. The differences of cell distribution exist both

between primary (lighter) and metastatic (darker) sites, and across four metastatic

cases (different colors)
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4 Discussion

We developed a tool called RAD for deconvolution of multi-stage
transcriptomic data corresponding to primary and metastatic tumor
samples. We have shown that RAD can robustly and accurately esti-
mate the number of cell populations, unmix the cell populations and
infer biomarkers from bulk RNA-Seq of tumor samples, while
showing improved reliability and accuracy over other deconvolution
algorithms on both simulated and real RNA datasets. We applied
RAD with gene module compression and a phylogeny inference al-
gorithm to bulk transcriptome data collected from matched breast
primary and four different metastatic sites to characterize similar-
ities and variations in tumor clonal populations by eventual site of
metastasis. Significant perturbations of cancer-related pathways,
such as PI3K-Akt, ECM-receptor and focal adhesion emerge as

common early events across sites of breast cancer metastasis, show-
ing the potential of the method to reveal recurrent evolution mecha-
nisms of breast cancer metastasis.

It has been observed that the noise of RNA expression grows
with its amplitude, suggesting that a more principled probabilistic
model instead of Frobenius norm could potentially further improve
the deconvolution accuracy (Zhu et al., 2018). Furthermore, we
applied RAD by considering a limited two-stage progression pro-
cess, without use of the time-series information. One future direc-
tion might be extending RAD into a temporal model to take
advantage of more precise information on time to metastasis when
available or more extensive time-series data on multiple time points
such as might be produced by ‘liquid biopsy’ technologies. We main-
ly focused on transcriptome data in this work, but we expect the
RAD algorithm to be versatile and potentially applicable to other

Fig. 7. Phylogenies of four different metastatic cases. Although there are large differences in tumor communities across the four metastasis sites, there exists common mecha-

nisms, such as the early events of perturbed PI3K-Akt, ECM-receptor and focal adhesion pathways. (a) Breast cancer brain metastasis. (b) Breast cancer ovary metastasis. (c)

Breast cancer bone metastasis. (d) Breast cancer GI metastasis
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types of continuous biological data, such as epigenome and prote-
ome. With moderate adaptations, it is also possible to apply RAD to
genome data, which is one major focus of cancer phylogenetics,
such as copy number variations (Eaton et al., 2018). While much of
the motivation for this work is the difficulty of acquiring scRNA for
primary tumor samples when examining metastases years later, we
do anticipate that this problem will lessen over time. It is thus worth
considering for the future whether our methods might be adapted
for working on limited and noisy scRNA with matched bulk data
(Elyanow et al., 2020).
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