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Background: cancer progression and metastasis 
• Tumor phylogeny: tumor cells 

follow a clonal evolution process
• Metastasis: transfer from primary 

site to other sites
• Heterogeneous tumor 

populations/clones even from 
same tissue
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Background: breast cancer metastasis and bulk data
• Breast cancer: second common cause of death 

from cancer in women
• Breast cancer metastasis (BrM) causes majority 

of those deaths
• Mechanism of tumor progression during 

metastasis relies on phylogenetic analysis
• scRNA rarely available due to years between 

sample collection
• Robust and accurate deconvolution (RAD) of 

bulk tumor samples is essential
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Approach: evolution inference of BrM from bulk RNA
• To boost RAD: knowledge-based gene module (DAVID; DW Huang et al. 2009)
• Core of RAD: bulk sample deconvolution
• Based on RAD-unmixed populations: phylogeny inference (MEP; Tao et al. 2019)
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RAD formulation: biologically inspired NMF
• RAD formulated as non-negative matrix factorization (NMF)

• B: bulk RNA of samples; C: RNA of populations; F: fractions of populations
• Data noisy and correlated à gene module compression
• Non-convex and no efficient optimizer à RAD three-phase optimizer
• k not known in prior à cross-validation
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RAD phase 1: multiplicative update warm-start
• Revised multiplicative update (MU) rules

• Loop until objective stops decreasing

• MU is non-increasing objective only for general NMF problem (DD Lee et al. 2000)
• Fast to converge to a reasonable solution
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RAD phase 2: coordinate descent
• Coordinate descent

• Optimizes over C and F iteratively until convergence

• Subproblems solved as quadratic programming problems (MS Andersen et al. 2013)
• Computationally expensive compared with MU warm-start
• Further reduces loss by ~5-30%
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RAD phase 3: minimum similarity selection
• Minimum similarity selection

• Repeat random initialization, phase 1 and phase 2 for multiple (e.g., 10) times 
• Select solution with minimum similarity

• Better solution: components/populations orthogonal from each other
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• Masking trick for cross-validation (CV)
• Select k that achieves minimum CV error
• Masked RAD algorithm exits!

Population number estimation via RAD
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Datasets and experiment design

Dataset Gene module Ground truth C and F Purpose

Simulated (K 
Zaitsev et al. 2019)

Known Known • Evaluate effect of gene module

GSE19830 (SS 
Shen-Orr et al. 2010)

Knowledge base Known • Evaluate effect of gene module
• Evaluate RAD accuracy on 

estimating C, F, and k

BrM (L Zhu et al. 
2019)

Knowledge base Unknown • Understand breast cancer
metastasis mechanism
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Gene modules facilitate robust deconvolution
• Simulated datasets: gene module known

• Too small module size à fragile deconvolution
• Too large module size à worse estimation
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RAD detects correct number of cell components
• GSE19830: three cell types known in advance
• BrM: ground truth cell types unknown
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RAD estimates populations more accurately
• Outperforms three competing methods on GSE19830 dataset
• Gene module inferred from knowledge base improves RAD as well
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Common evolutionary mechanisms of BrM
• Infer phylogenies from RAD-unmixed populations

• Minimum elastic potential (MEP; Nei et al. 1987, Tao et al. 2019)
• Four cases in total (one shown)

• Common early pathway-level events
• ↓ PI3K-Akt (PK Brastianos et al. 2015)
• ↓ Extracellular matrix (ECM)-receptor interaction
• ↓ focal adhesion (M Nagano et al. 2012)
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Conclusion and future work
• Deconvolution of bulk data is the key to understanding the BrM progression
• We propose RAD, a toolkit that accurately and robustly estimates the number of 

cell populations (k), expression profiles of cell populations (C), and fractions of 
populations (F) 

• Through RAD, we find the loss of PI3K-Akt, ECM-receptor interaction, and focal 
adhesion emerge as the common early pathway-level events of BrM

• Integrate single cell data of metastatic samples to improve RAD performance
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