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Metastasis is the primary mechanism by which cancer results in mortality and there are

currently no reliable treatment options once it occurs, making the metastatic process a

critical target for new diagnostics and therapeutics. Treating metastasis before it appears

is challenging, however, in part because metastases may be quite distinct genomically

from the primary tumors from which they presumably emerged. Phylogenetic studies

of cancer development have suggested that changes in tumor genomics over stages

of progression often result from shifts in the abundance of clonal cellular populations,

as late stages of progression may derive from or select for clonal populations rare in

the primary tumor. The present study develops computational methods to infer clonal

heterogeneity and dynamics across progression stages via deconvolution and clonal

phylogeny reconstruction of pathway-level expression signatures in order to reconstruct

how these processes might influence average changes in genomic signatures over

progression. We show, via application to a study of gene expression in a collection

of matched breast primary tumor and metastatic samples, that the method can infer

coarse-grained substructure and stromal infiltration across the metastatic transition. The

results suggest that genomic changes observed in metastasis, such as gain of the

ErbB signaling pathway, are likely caused by early events in clonal evolution followed by

expansion of minor clonal populations in metastasis, a finding that may have translational

implications for early detection or prevention of metastasis1.

Keywords: breast cancer, brain metastases, phylogenetics, deconvolution, pathways, gene modules,

transcriptome, matrix factorization

1Algorithmic details, parameter settings, and source code are available at https://github.com/CMUSchwartzLab/NND.

Additional results and proofs are provided in the Supplementary Material.
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1. INTRODUCTION

Metastatic disease is the primary mechanism by which cancer
results in patient mortality (Chambers et al., 2002; Chaffer and
Weinberg, 2011). By the time metastases have appeared, there are
generally no viable treatment options (Guan, 2015). Successful
treatment thus depends on treating not just the primary tumor
but also the seeds of metastasis that may linger after a seemingly
successful remission. Identifying successful treatment options
for metastasis is problematic, however, since the genomics of
primary and metastatic tumors may be quite different even
in single patients and metastatic cell populations may be
poorly responsive to therapies effective on the primary tumor.
Studies of cell-to-cell variation in cancers have revealed often
substantial clonal heterogeneity in single tumors, with clonal
populations sometimes dramatically shifting across progression
stages (Greaves and Maley, 2012). Phylogenetic studies of clonal
populations have been inconclusive on the typical evolutionary
relationships between primary and metastatic tumors (Schwartz
and Schäffer, 2017). It remains a matter of debate whether
changes in clonal composition occur primarily through ongoing
clonal evolution, which results in novel clones with metastatic
potential and resistance to therapy, or from selection on existing
clonal heterogeneity already present at the time of first treatment
(Ding et al., 2013; de Bruin et al., 2014). The degree to which
either answer is true has important implications for prospects for
early detection or prophylactic treatment of metastasis.

Brain metastases (BrMs) occur in around 10–30% of
metastatic breast cancers cases (Lin et al., 2004). Although
recent advances in the treatment of metastatic breast cancer
have been able to achieve long-term overall survival, there
are limited treatment options for BrMs and clinical prognoses
are still disappointing (Witzel et al., 2016). Recent work
examining transcriptomic changes between paired primary and
BrM samples has demonstrated dramatic changes in expression
programs over metastasis, including changes in tumor subtype
with important implications for treatment options and prognosis
(Priedigkeit et al., 2017; Vareslija et al., 2018). Some past
research has sought to infer phylogenetic models to explain
the development of brain metastases based on somatic genomic
alterations (Brastianos et al., 2015; Körber et al., 2019).
Such methods are challenged in drawing robust conclusions
about recurrent progression processes, though, by the high
heterogeneity within single tumors and across progression stages
and patients. While single-cell methods are proving powerful
for resolving such problems in other contexts (Qiu et al., 2011;
Elyanow et al., 2020), such data is rarely available for studies
of metastatic progression, which generally require working
with samples archived years before metastases are discovered.
Changes in the activity of particular genetic pathways or modules
may provide a more robust measure of frequent genomic
alterations across cancers.

In the present work, we develop a strategy for tumor
phylogenetics to explore how changes in clonal composition,
via both novel molecular evolution and shifts in population
dynamics of tumor clones and associated stroma, influence
changes in expression programs across such progression stages.

Our methods make use of multi-site bulk transcriptomic data
to profile changes evident in gene expression programs between
clones and progression stages. We break from past work in this
domain in that we seek to study not clones per se, as is typical
in tumor phylogenetics (Eaton et al., 2018; Tao et al., 2019b),
but what we dub “cell communities”: collections of clones or
other stromal cell types that persist as a group with similar
proportions across samples (section 2.4). We accomplish this
via a novel transcriptomic deconvolution approach designed
to make use of multiple samples both within and between
patients (Schwartz and Shackney, 2010; Zare et al., 2014) while
improving robustness to inter- and intra-tumor heterogeneity
by integrating deconvolution with pathway-based analyses of
expression variation (Park et al., 2009).

2. MATERIALS AND METHODS

2.1. Overview
Cell populations evolve due to genomic perturbations that can
result in changes in the activity of various functional pathways
between clones. Our overall method for deriving coarse-grained
portraits of cell community evolution at the pathway level is
illustrated by Figure 1. After the preprocessing of transcriptome
data (section 2.2), the overall workflow consists of three main
steps: First, the bulk expression profiles are mapped into the
gene module and pathway space using external knowledge
bases to reduce redundancy, noise, and sparsity, and to provide
markers of expression variation for the subsequent analysis
(section 2.3). Second, a deconvolution step is implemented
to resolve cell communities, i.e., coarse-grained mixtures of
cell types presumed to represent an associated population of
cancer clones and stromal cells, from the compressed pathway
representation of samples (section 2.4). Third, phylogenies of
these cell communities are built based on the deconvolved
communities as well as inferred ancestral (Steiner) communities
to reconstruct likely trajectories of evolutionary progression
by which cell communities develop—through a combination
of genetic mutations, expression changes, and changes in
population distributions—as a tumor progresses from healthy
tissue to primary and potentially metastatic tumor (section 2.5).

2.2. Transcriptome Data Preprocessing
We applied our methods to raw bulk RNA-Sequencing data
of 44 matched primary breast and metastatic brain tumors
from 22 patients (each patient gives two samples) (Priedigkeit
et al., 2017; Vareslija et al., 2018), where six patients were
from the Royal College of Surgeons (RCS) and sixteen patients
from the University of Pittsburgh (Pitt). These data profiled
the expression levels of ∼60,000 transcripts. These can be
represented in the format of a matrix, with rows corresponding
to genes and columns to the samples (primary tumors or
metastases). We removed the genes that are not expressed
in any sample. We also considered only protein-coding genes
in the present study. Approximately 20,000 genes remain
after the filter. We conducted quantile normalization across
samples using the geometric mean to remove possible artifacts
(Amaratunga and Cabrera, 2001). The top 2.5% and bottom
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FIGURE 1 | The pipeline of BrM phylogenetics using matched bulk transcriptome.

2.5% of expressions were clipped to further reduce noise.
Finally, we transformed the resulting bulk gene expression
values into the log space and mapped those for each gene
to the interval [0, 1] by a linear transformation. The resulting
preprocessed transcriptome data were used as the input of
Step 1 (section 2.3).

2.3. Mapping to Gene Modules and Cancer
Pathways
The protein-coding gene expressions were mapped into both
perturbed gene modules and cancer pathways, using the DAVID
tool and external knowledge bases (Huang et al., 2009), as
well as the cancer pathways in the KEGG database (Kanehisa
and Goto, 2000). This step compresses the high dimensional
data and provides markers of cancer-related biological processes
(Figure 1, Step 1). Note that although both gene module and
cancer pathway representations capture recurrent features of
metastatic progression, they serve different purposes in our
analysis. Gene modules are an essential part of deconvolution
in the following steps because they provide the major variance
within the data. Cancer pathways serve primarily as probes for
post-hoc interpretation of the unmixed communities, but are
biased relative to the gene module space by the focus only on
genes with known relevance to cancer.

2.3.1. Gene Modules
Functionally similar genes are usually affected by a common set
of somatic alterations (Park et al., 2009) and therefore are co-
expressed in the cells. These genes are believed to belong to the
same “gene modules” (Desmedt et al., 2008; Tao et al., 2020).
Inspired by the idea of gene modules, we fed a subset of 3,000
most informative genes out of the ∼20,000 genes that have the
largest variances into the DAVID tool for functional annotation
clustering using several databases (Huang et al., 2009). DAVID
maps each gene to one or more modules. We did not force the
genes to be mapped into disjunct modules because a gene may
be involved in several biological functions and therefore more
than one gene module. We removed gene modules that were
not enriched (fold enrichment < 1.0) and kept the remaining
m1 = 109modules (and the corresponding annotated functions),
where fold enrichment is defined as the EASE score of the current
module to the geometric mean of EASE scores in all modules
(Hosack et al., 2003). The gene module values of all the n =
44 samples were represented as a gene module matrix BM ∈

R
m1×n. The i-th gene module value in j-th sample, (BM)i,j, was

calculated by taking the sum of expressions of all the genes in
the i-th module. Then BM was rescaled row-wise by taking the
z-scores across samples to compensate for the effect of variable
module sizes.
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2.3.2. Cancer Pathways
Although the gene module representation is able to capture the
variances across samples and reduce the redundancy of raw
gene expressions, it has two disadvantages. The first is a lack
of interpretability. Specifically, some annotations assigned by
DAVID are not directly related to biological functions, and the
annotations of different modules may substantially overlap. The
second is that the key perturbed cancer pathways or functions
may not always be the ones that vary most across samples. For
example, genes in cancer-related KEGG pathways (hsa05200;
Kanehisa and Goto, 2000) are not especially enriched in the
top 3,000 genes with the largest expression variances. To make
better use of prior knowledge on cancer-relevant pathways, we
supplemented the generic DAVID pathway sets with a KEGG
“cancer pathway” representation of samples BP ∈ R

m2×n, where
the number of cancer pathways m2 = 24. The cancer-related
pathways in the KEGG database are cleaner and easier to explain,
more orthogonal to each other, and contain critical signaling
pathways to cancer development. We extracted the 23 cancer-
related pathways from the following 3 KEGG pathway sets:
Pathways in cancer (hsa05200), Breast cancer (hsa05224), and
Glioma (hsa05214). An additional cancer pathway RET pathway
was added, since it was found to be recurrently gained in the
prior research (Vareslija et al., 2018). See y-axis of Figure 4D
for the complete list of 24 cancer pathways. We considered all
the ∼20,000 protein-coding genes other than top 3,000 genes.
The following mapping of cancer pathways and transformation
to z-scores were similar to that we did to map the gene modules.

Until this step, the raw gene expressions of n samples
were transformed into the compressed gene module/pathway
representation of samples B =

[

B
⊺

M ,B
⊺

P

]⊺
∈ R

m×n, where
m = m1 + m2. The gene module representation BM serves
for accurately deconvolving and unmixing the cell communities,
while the pathway representation BP serves as markers/probes
and for interpretation purpose.

2.4. Deconvolution of Bulk Data
We applied a type of matrix factorization (MF) with constraints
on the pathway-level expression signatures to deconvolve the
communities/populations from primary and metastatic tumor
samples (Figure 1, Step 2) (Koren et al., 2009). Note that
common alternatives, such as principal components analysis
(PCA) and non-negative matrix factorization (NMF) are not
amenable to this case (Lee and Seung, 2000), since PCA does not
provide a feasible solution to the constrained problem, and the
NMF does not apply to our mixture data, which can be either
positive or negative.

2.4.1. Cell Communities
We define a cell community to be a set of clones/clonal
subpopulations and other cell types that propagate as a group
during the evolution of a tumor. A community may be just a
single subpopulation/clone, but is a more general concept in the
sense that it usually involves multiple related clones and their
associated stroma. For example, a set of immunogenic clones
and the immune cells infiltrating them might collectively form
a community that has a collective expression signature mixing

signatures of the clones and associated immune cells, even if the
individual cell types are not distinguishable from bulk expression
data alone. While much work in this space has classically
aimed to separate individual clones, or perhaps individual cell
types more broadly defined, we note that deconvolution may
be unable in principle to resolve distinct cell types if they are
always co-located in similar proportions. It is particularly true
when data is sparse and cell types are fit only approximately,
as in the present work, that a model with large complexity to
deconvolve the fine-grained populations is prone to overfit. The
community concept is intended in part to better describe the
results we expect to achieve from the kind of data examined
here and in part because identifying these communities is itself
of interest in understanding how tumor cells coevolve with their
stroma during progression and metastasis. Single-cell methods
may provide an alternative, but are not amenable to preserved
samples, such as are needed when retrospectively studying
primary tumors and metastases that may have been biopsied
years apart.

2.4.2. Formulation of Deconvolution
With a matrix of bulk pathway values B ∈ R

m×n, the
deconvolution problem is to find a component matrix C =
[

C
⊺

M ,C
⊺

P

]⊺
∈ R

m×k that represents the inferred fundamental
communities of tumors, and the corresponding set of mixture

fractions F ∈ R
k×n
+ :

min
C,F

‖B− CF‖2Fr , (1)

s.t. Flj ≥ 0, l = 1, ..., k, j = 1, ..., n, (2)
∑k

l=1
Flj = 1, j = 1, ..., n, (3)

where ||X||Fr is the Frobenius norm. The column-wise
normalization in Equation (3) aims for recovering the
biologically meaningful cell communities. In addition, they
are equivalent to applying ℓ1 regularizers and therefore enforce
sparsity to the fraction matrix F (Supplementary Material).

2.4.3. Neural Network Deconvolution
Although it is possible to build new algorithms for solving
MF by adapting previous work (Lee and Seung, 2000), the
additional but necessary constraints of Equations (2) and
(3) make the optimization much harder to solve. For the
problem of Equations (1)–(3), one can prove that it does
not generally guarantee convexity (Supplementary Material). A
slightly modified version of the algorithm to solve NMF with
constraints may guarantee neither good fitting nor convergence
(Lei et al., 2019, 2020). Therefore, instead of revising existing
MF algorithms, such as ALS-FunkSVD (Funk, 2006; Bell and
Koren, 2007; Koren et al., 2009), we developed an algorithm
which we call “neural network deconvolution” (NND) to solve
the optimization problem using gradient descent. Specifically,
the NND was implemented using backpropagation in the form
of a neural network (Figure 2A) with the PyTorch package
(https://pytorch.org/) (Rumelhart et al., 1986; Kingma and Ba,
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FIGURE 2 | Method details. (A) Neural network architecture of NND. (B) Test errors of NND using 20-fold CV. Errors in unit of mean square error (MSE). (C) Illustration

of a phylogeny with five extant nodes and three Steiner nodes.

2014), based on the revised constraints:

min
C,Fpar

‖B− CF‖2Fr , (4)

s.t. F = cwn
(∣

∣Fpar
∣

∣

)

, (5)

where |X| applies element-wise absolute value and cwn (X)

is column-wise normalization, so that each column sums up
to 1. The two operations of Equation (5) naturally rephrase
and remove the two constraints in Equations (2) and (3), and
meanwhile fit the framework of neural networks. An alternative
to the absolute value operation |X| might be rectified linear unit
ReLU(X) = max (0,X). However, this activation function is
unstable and leads to inferior performance in our case, since
Xlj will be fixed to zero once it becomes negative and will lose
the chance to get updated in the following iterations. One may
also want to replace the column-wise normalization cwn (X)

with softmax operation softmax(X). However, the non-linearity
introduced by softmax actually changes the original optimization
problem (Equations 1–3) and the fitted F is therefore not sparse.

Based on the revised NND optimization problem (Equations
4 and 5), we built the neural network with the architecture shown
in Figure 2A. An Adam optimizer other than vanilla gradient
descent was used with default momentum parameters β1 = 0.9,
β2 = 0.999 and learning rate of 1× 10−5 (Kingma and Ba, 2014).
The mini-batch technique is not required since the data size in
our application is small enough not to require it (B ∈ R

m×n,
m = 133, n = 44). The training is run until convergence,
which is defined as when the relative decrease of training loss
is smaller than ǫ = 1 × 10−10 every 20,000 iterations. This
implementation has two main advantages: First, the method can
be easily adapted to a wide range of optimization scenarios with
various constraints, when existing methods do not or are hard to
apply. Second, the NND has the flexibility of allowing for cross-
validation, which is important for us in choosing the number of
components k and preventing overfitting.

One might be suspicious whether the neural network fits
precisely in practice, since it is based on a simple gradient
descent optimization. To validate the fitting ability of NND, we
plotted the PCA of original samples B and the fitted samples
B̂ (Supplementary Material). One can easily see that NND
provides a good fit to the data.

2.4.4. Cross-Validation of NND
In order to find the best tradeoff between model complexity
and overfitting, we used cross-validation (CV) with the
“masking” method to choose the optimal number of
components/communities k = 5 that has the smallest test
error (Figure 2B). In each fold of the CV, we used estimated
B̂ to only fit some randomly selected elements of B, and then
the test error was calculated using the other elements of B. This
was implemented by introducing two additional mask matrices
Mtrain,Mtest ∈ {0, 1}

m×n, which are in the same shape of B, and
Mtrain +Mtest = 1m×n. During the training time, with the same
constraints in Equation (5), the optimization goal is:

min
C,Fpar
‖Mtrain ⊙ (B− CF)‖2Fr , (6)

where X ⊙ Y is the Hadamard (element-wise) product. At
the time of evaluation, given optimized Ĉ, F̂par, and therefore

optimized F̂ = cwn
(∣

∣

∣
F̂par

∣

∣

∣

)

for the optimization problem

during training, the test error was calculated on the test set:
∥

∥

∥
Mtest ⊙

(

B− ĈF̂
)∥

∥

∥

2

Fr
. We used 20-fold cross-validation on the

NND, so in each fold 95% of positions of Mtrain and 5% of
positions of Mtest were 1s. Note that the actual number of cell
populations is probably considerably larger than 5, and therefore
each one of the five communities may contain multiple cell
populations. Furthermore, it is likely that with sufficient numbers
and precision of measurements, these communities could be
more finely resolved into their constituent cell types. However
k = 5 represents the largest hypothesis space of NNDmodel that
can be applied to the current dataset without severe overfitting.

2.5. Phylogeny of Inferred Cell
Subcommunities and Pathway Inference of
Steiner Nodes
We built “phylogenies” of cell subcommunities and estimated
the pathway representation of unobserved (Steiner) nodes (Lu
et al., 2003) inferred to be ancestral to them, with the goal of
discovering critical communities that appear to be involved in the
transition to metastasis and identifying the important changes
of functions and expression pathways during this transition
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(Figure 1, Step 3). Note that we are using the term “phylogeny”
loosely here, as these trees are intended to capture evolution
of populations of cells not just by accumulation of mutations
from a single ancestral clone but also via changes in community
structure, for example, due to generating or suppressing an
immune response or migrating to a metastatic site. Although an
abuse of terminology, we use the term phylogeny here due to the
methodological similarity to more proper phylogenetic methods
in wide use for analyzing mutational data in cancers (Schwartz
and Schäffer, 2017).

2.5.1. Phylogeny of Communities
Given the pathway profiles of the extant communities at the time
of collecting tumor samples C ∈ R

m×k, a phylogeny of the
k extant cell communities was built using the neighbor-joining
(NJ) algorithm (Nei and Saitou, 1987), which inferred a tree that
contains k extant nodes/leaves, k − 2 unobserved Steiner nodes,
and edges connecting two Steiner nodes or a Steiner node and an
extant node. We estimated an evolutionary distance for any pair
of two communities u, v as the input of NJ using the Euclidean
distance between their pathway vectors ‖C·u − C·v‖2, similar to
that in a prior work (Park et al., 2009).

2.5.2. Inference of Pathways: Setting and Approach
Denote the phylogeny of cell subcommunities as G = (V , E),
and V = VS ∪ VC, where the indices of Steiner node VS =

{1, 2, ..., k − 2} (|VS| = k − 2), the indices of extant nodes
VC = {k − 1, k, ..., 2k − 2} (|VC| = k). For each edge (u, v) ∈ E ,
where 1 ≤ u < v ≤ 2k − 2, the first node of edge u ≤
k − 2 is always a Steiner node. The second node v can be either
a Steiner node (v ≤ k − 2) or extant node (v ≥ k − 1).
Denote the set of weights W = {wuv = 1/duv | (u, v) ∈ E}

(inverse distance), where the edge length duv is the output of
NJ. For each dimension i of the pathway vectors, we consider
them independently and separately, so that each dimension of the
Steiner nodes can be solved in the same way. Now let us consider
the i-th dimension (and omit the subscript i for brevity) of extant
nodes VC: y =

[

yk−1, yk, ..., y2k−2
]

⊺
= C

⊺

i· ∈ R
k and Steiner

nodes VS: x =
[

x1, x2, ..., xk−2
]

⊺
∈ R

k−2. Figure 2C illustrates
a phylogeny where k = 5. The inference of the i-th element in
the pathway vector of the Steiner nodes can be formulated as
minimizing the following elastic potential energy U(x, y;W):

min
x

U(x, y; W) =
∑

(u,v)∈E
v≤k−2

1

2
wuv(xu − xv)

2

+
∑

(u,v)∈E
v≥k−1

1

2
wuv(xu − yv)

2, (7)

which can be rephrased as a quadratic programming problem and
solved easily, as we show below.

2.5.3. Inference of Pathways: Derivation of Quadratic

Programming, P(W), and q(W , y)
THEOREM 1. Equation (7) can be further rephrased as a quadratic
programming problem:

min
x

1

2
x⊺P(W)x+ q(W , y)⊺x, (8)

where P(W) is a function that takes as input edge weights W and
outputs a matrix P ∈ R

(k−2)×(k−2), q(W , y) is a function that
takes as input edge weights W and vector y and outputs a vector
q ∈ R

k−2.

PROOF: Based on Equation (7),U(x, y;W) ≥ 0. Each term inside
the first summation (v ≤ k− 2) can be written as:

1

2
wuv(xu − xv)

2 =
1

2
x⊺P(wuv)x, (9)

where

P(wuv) =

u-th row

v-th row













0

u-th col

0 0

v-th col

0 0
0 wuv 0 −wuv 0

0 0 0 0 0

0 −wuv 0 wuv 0

0 0 0 0 0













. (10)

Each term (v ≥ k − 1) inside the second summation can be
rephrased as:

1

2
wuv(xu − yv)

2 =
1

2
x⊺P(wuv)x+ q(wuv, yv)

⊺x+ C(wuv, yv),

(11)

where

P(wuv) =

u-th row













0

u-th col

0 0 0 0
0 wuv 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0













,

q(wuv, yv) =

u-th row













0
−wuvyv

0

0

0













, (12)

and C(wuv, yv) =
1
2wuvy

2
v is independent of x. Therefore the

optimization in Equation (7) can be calculated and written
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as below:

min
x

∑

(u,v)∈E
v≤k−2

1

2
x⊺P(wuv)x

+
∑

(u,v)∈E
v≥k−1

(

1

2
x⊺P(wuv)x+ q(wuv, yv)

⊺x

)

, (13)

⇔ min
x

1

2
x⊺









∑

(u,v)∈E
v≤k−2

P(wuv)+
∑

(u,v)∈E
v≥k−1

P(wuv)









x

+
∑

(u,v)∈E
v≥k−1

q(wuv, yv)
⊺x, (14)

⇔ min
x

1

2
x⊺P(W)x+ q(W , y)⊺x. (15)

REMARK 1. The optimal x⋆ of the Equation (7), or the solution to
the quadratic programming problem Equation (8) can be solved by
setting the gradient to be 0:

P(W)x⋆ + q(W , y) = 0. (16)

Therefore,

x⋆ = −P(W)−1q(W , y). (17)

REMARK 2. Based on the proof, we can derive how to calculate the
matrix P(W) and vector q(W , y).

Initialize the matrix and vector with zeros:

P← 0(k−2)×(k−2), q← 0k−2. (18)

For each edge (u, v) ∈ E with weight wuv, there are two possibilities
of nodes u and v: First, if both of them are Steiner nodes (u ≤ k−2,
v ≤ k− 2), we update P and keep q the same:

Puu ← Puu + wuv,Pvv ← Pvv + wuv,

Puv ← Puv − wuv, Pvu ← Pvu − wuv. (19)

Second, if u is Steiner node and v is an extant node (u ≤ k − 2,
v ≥ k− 1), we update both P and q:

Puu ← Puu + wuv, qu ← qu − yv · wuv. (20)

We apply the same procedure to all dimension of pathways

i = 1, 2, ...,m to get the full pathway values for each Steiner node.

3. RESULTS

3.1. NND Deconvolves the Bulk RNA
Accurately
Before we applied our deconvolution algorithm NND to the
breast cancer brain metastatic samples, we first validated our
algorithm on a semi-simulated dataset where the ground truth
expressions and fractions of each cell clone in the mixture
samples are known.

3.1.1. Semi-simulated GSE11103 Dataset
The semi-simulated dataset is based on the real data of pure
clones from the GSE11103 dataset (Abbas et al., 2009; Barrett
et al., 2013). Expression profiles of four different cells were
measured using microarrays: Raji (B cell), IM-9 (B cell), THP-1
(monocyte), Jurkat (T cell). Each experiment was repeated three
times. We took the average of the three replicates to get the
expression data of the four pure cell clones. The top 300 genes
that varied most across cell types were selected as the ground
truth real data of pure cell clones: C ∈ R

300×4
+ . We then created

100mixture samples of the four pure clones in silicoB ∈ R
300×100
+

by randomly generating the fraction matrix F ∈ R
4×100
+ . The

fraction matrix was generated in the following way:

Flj ← U(0, 1), l = 1, ..., 4, j = 1, ..., 100, (21)

Flj ←
Flj

∑4
l′=1 Fl′j

, j = 1, ..., 100, (22)

where U(0, 1) is a uniform distribution in the interval [0, 1].
The semi-simulated bulk expression matrix Bwas then generated
from C, F, with a log-normal noise:

(B)ij = (CF)ij + 2N(0,(sσ )2), i = 1, ..., 300, j = 1, ..., 100,

(23)

whereN
(

0, (sσ )2
)

is a Gaussian distribution; s controls the noise
level, which we set to 0, 0.4, 0.9, and 1.3 for test; σ is the standard
deviation of log2-transformed original GSE11103 data.

3.1.2. Performance Evaluation
Given the bulk matrix B, we applied NND and other two
algorithms to infer the estimated Ĉ, F̂ and B̂ = ĈF̂, and compared
the accuracy between estimated and actual values using the
following metrics. For C, we used L1 loss (Zhu et al., 2018):

L1 loss(C) =
‖Ĉ− C‖1

‖C‖1
. (24)

For F and B, we used root mean square error (RMSE):

RMSE(F) =

√

‖F̂− F‖2Fr, (25)

RMSE(B) =

√

‖B̂− B‖2Fr
‖B‖2Fr

(26)

Different levels of noise s were added to test the robustness of
models and the performance of different models under different
conditions. We repeated all the experiments for 10 times to get
the boxplot.

3.1.3. Competing Algorithms
There are two competing algorithms for the deconvolution
problem. Geometric unmixing is an algorithm that borrows the
intuition from computational geometry (Schwartz and Shackney,
2010), which first identifies the corners of a simplex containing
all the mixture sample points, and then infers the fraction matrix.
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FIGURE 3 | Comparison of NND and other algorithms on the semi-simulated GSE11103 dataset shows the better accuracy and robustness of NND algorithm. (A–C)

Accuracies in estimated C, F, and B with three different algorithms. We tested four noise levels and repeated the experiments for ten replicates. (D) Estimated Ĉ and

ground truth C using three different algorithms with noise level s of 1.3. (E) Estimated F̂ and ground truth F using three algorithms with noise level s of 1.3.

However, the algorithm does not directly optimize the problem
(Equations 1–3). Another intuitive algorithm is based on the
popular multiplicative update (MU) rule that solves general NMF
problem (Lee and Seung, 2000): an additional update step of

Flj ←
Flj

∑k
l′=1

Fl′ j
, j = 1, ..., n can be added to the loop. Although the

original MU rule guarantees the non-increasing of the objective
function, this additional update step can lead to an increasing
objective and we need to stop the iteration once this happened.
Since the two competing algorithms work on non-negative space,
we adapted the NND by adding an element-wise absolute value
operator after the C in the network (Figure 2A).

3.1.4. Superiority of NND
We show the results in Figure 3. Figures 3A–C show the
accuracies of both C, F, and B using the three algorithms under
various noise levels. One can easily see that NND achieves lower
L1 loss of C, RMSE of F, and RMSE of B. What is more, it
is also much more robust than the geometric and MU-NMF
algorithms, as there are fewer outliers that have huge errors. MU-
NMF has a reasonable estimation accuracy of C and F. However,
its overall fitting ability is limited due to its non-convergence-
guaranteed MU optimization algorithm. We can also visualize
the estimation accuracy by plotting the estimated values and
ground truth values at a specific noise level, as is shown in
Figures 3D,E. One can see the superiority of NND qualitatively
over the other two algorithms in estimating expression profiles
and fractions of individual pure clones.

3.2. Gene Modules/Pathways Provide an
Effective Representation
Gene expressions of samples were mapped into the gene
module and pathway space in order to reduce the noise of

raw transcriptome data and reduce redundancy (section 2.3).
We verified that the gene module/pathway representation is
effective in the sense that it captures distinguishing features of
primary/metastatic sites and individual samples well and is able
to identify recurrently gained or lost pathways.

3.2.1. Feature Space of the Gene Module and

Pathway Representation
As one can see in Figure 4A, the first principal component
analysis (PCA) dimension of the gene module and pathway
representation accounts for the difference between primary and
metastatic samples, while the second and third PCA dimensions
mainly capture variability between patients. This observation
suggests the feasibility of using the gene module/pathway
representation to distinguish recurrent features of metastatic
progression across patients despite heterogeneity between
patients. To make a direct comparison of the noise and
redundancy between the gene module/pathway and raw gene
expression representations, we applied hierarchical clustering
to the 44 samples using Ward’s minimum variance method
(Ward, 1963). Two hierarchical trees were built based on the two
different representations (Figure 4B). The gene module/pathway
features more effectively separate the primary and metastatic
samples into distinct clusters (Figure 4B, right panel) than do
the raw gene expression values (Figure 4B, left panel). This
is consistent with the PCA results that the largest mode of
variance in the pathway representation distinguishes primary
from metastatic samples. We do notice that in a few cases,
matched primary and metastatic samples from the same patient
are neighbors with pathway-based clustering. For example,
29P_Pitt:29M_Pitt and 51P_Pitt:51M_Pitt are grouped in the
same clades using the pathway representation, showing that in
a minority of cases, features of individual patients dominate
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FIGURE 4 | Results and analysis. (A) First three gene module/pathway representation PCA dimensions of matched primary and metastatic samples. Matched

samples are connected. (B) Hierarchical clustering of tumor samples based on raw gene expressions (left panel) and compressed gene module/pathway

representation (right panel). Metastatic samples are shown in red rectangles and primary ones in yellow. (C) Portions and changes of the five communities in primary

and metastatic sites. Each gray line connects the portions of a community in the primary site (blue node) and metastatic site (red node) from the same patient. (D)

Pathway strengths across cell communities. (E) Phylogeny of cell subcommunities.

over primary vs. metastatic features. Following previous work
(Park et al., 2009), we quantified the ability of the hierarchical
tree to group the samples of the same labels using four metrics.
(1) MSD: Mean square distance of edges that connect nodes of
the same label (primary vs. metastatic). (2) zMSD: The labels of
all nodes were shuffled and the MSD is recalculated for 1,000
times to get the mean µMSD and standard deviation σMSD,
which were used to get the z-score of the current assignment
zMSD = (MSD− µMSD)

/

σMSD . (3) rMSD: The ratio of MSD
of edges that connect same label nodes and MSD of edges that
connect distinct label nodes. (4) zrMSD: as with MSD, a z-score
of rMSD was calculated by shuffling labels for 1,000 times.
Intuitively, the smaller values the MSD, zMSD, rMSD, and zrMSD

are, the better is the feature representation at grouping same
label samples together. The shortest paths and distances between
all pairs of nodes were calculated using the Floyd-Warshall
algorithm (Floyd, 1962; Warshall, 1962). All the edge lengths
were considered as 1.0 to account for the different scales of
pathway and gene representations. The pathway representation
has significantly lower values for all four metrics (Table 1),
indicating its strong grouping ability.

TABLE 1 | Quantitative performance of hierarchical clustering.

Feature representation MSD rMSD zMSD zrMSD

Gene expression 99.62 0.93 −2.60 −2.57

Gene module/pathway 86.23 0.66 −13.37 −11.42

3.2.2. Recurrently Perturbed Cancer Pathways
We next identified differentially expressed pathways in the
primary and metastatic tumors using bulk data BP ∈ R

24×44,
prior to deconvolving cellular subcommunities. We conducted
the Student’s t-test followed by FDR correction on each of the 24
pathways. Eleven pathways are significantly different between the
two sites (FDR < 0.05; Table 2). The signaling pathways related
to neurotransmitter and calcium homeostasis, including cAMP
and Calcium (Hofer and Lefkimmiatis, 2007), are enriched in
metastatic samples, which we can suggest may reflect stromal
contamination by neural cells in the brain metastatic samples.
We also observed recurrent gains in ErbB pathway, as indicated
by the primary studies (Priedigkeit et al., 2017; Vareslija et al.,
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TABLE 2 | Differentially expressed cancer pathways between primary and

metastatic samples (FDR < 0.05).

Gain/Loss after

metastasis

Differentially expressed

pathways

FDR

Relative gain cAMP signaling pathway 6.88e-03

Relative gain ErbB signaling pathway 2.09e-02

Relative gain Calcium signaling pathway 4.39e-02

Relative loss Cytokine-cytokine receptor

interaction

4.37e-06

Relative loss Apoptosis 8.53e-04

Relative loss JAK-STAT signaling pathway 8.53e-04

Relative loss Wnt signaling pathway 3.97e-03

Relative loss Hedgehog signaling pathway 4.50e-03

Relative loss PI3K-Akt signaling pathway 1.35e-02

Relative loss TGF-beta signaling pathway 4.56e-02

Relative loss Notch signaling pathway 4.56e-02

2018). Three pathways related to immune activity are under-
expressed in metastatic samples, including Cytokine-cytokine
receptor interaction (Lee and Margolin, 2011), JAK-STAT (Lee
and Margolin, 2011), and Notch (Aster et al., 2017), consistent
with the previous inference of reduced immune cell expression
in metastases in general and brain metastasis most prominently
(Zhu et al., 2019). We can suggest that this result similarly
may reflect expression changes in infiltrating immune cells, due
to the immunologically privileged environment of the brain,
rather than expression changes in tumor cell populations. Five
other signaling pathways, including Apoptosis (Wong, 2011),
Wnt (Zhan et al., 2016), Hedgehog (Gupta et al., 2010), PI3K-Akt
(Brastianos et al., 2015), and TGF-beta (Massagué, 2008), show
reduction in metastatic samples and in each case, their loss or
dysregulation has been reported to promote the tumor growth
and brain metastasis. Note that the primary references for these
data define pathways using the co-expression pattern of genes
(Priedigkeit et al., 2017; Vareslija et al., 2018), while our work uses
external knowledge bases. Previous research also used somatic
mutations or copy number variation to analyze perturbed genes
(Brastianos et al., 2015; Priedigkeit et al., 2017), while we focus
exclusively on the transcriptome. Despite large differences in data
types and pathway definitions, our observations are consistent
with the prior analysis, especially with respect to variation in the
HER2/ErbB2 and PI3K-Akt pathways.

3.3. Landscape of Deconvolved Cell
Communities in Tumors
We unmixed the bulk data B into five components using NND
(section 2.4). The deconvolution enables us to produce at least a
coarse-grained landscape of major cell communities C and their
distributions in primary and metastatic tumors F. The number of
components (k = 5) was chosen through 20-fold cross-validation
(section 2.4; Figure 2B). Although the true heterogeneity of the
samples may be much larger, we fit k to provide a balance
between excessively coarse-grained communities if k is too small

vs. excessively high variance and thus unstable deconvolution if k
is too large.

3.3.1. Community Distributions Across Samples F
The portions of the five components in all the 44 samples
are represented as the mixture fraction matrix F ∈ R

5×44

(Figure 4C). A primary or metastatic community is one inferred
to change proportions substantially (magnitude > 0.05) in
the tumor samples after metastasis, or perhaps to be entirely
novel to or extinct in the metastatic sample (denoted by a
|P or |M suffix). Otherwise, the component is classified as a
neutral community. Three components (C1|M, C2|M, C4|M)
are classified as metastatic communities; one (C3|P) as primary;
and one (C5) as neutral (Figure 4C). Some components may
be missing in both samples of some patients, e.g., C1|M,
C2|M, C5|M are absent in two, one, and one patient. We
note that these five communities represent rough consensus
clusters of cell populations inferred to occur frequently, but not
universally, among the samples. Based on this rule, we can define
four basic cases of patients in total. Twelve subcases can be
found using a more detailed classification method based on the
existence of communities in both primary andmetastatic samples
(Supplementary Material).

3.3.2. Pathway Values of Communities C
We are especially interested in the pathway part CP of the
cell community inferences, since it serves as the marker and
provides results easier to interpret. The pathway values of five
subcommunities using CP provides a much more fine-grained
description of samples (Figure 4D), compared with that in
section 3.2, which is only able to distinguish the differentially
expressed pathways in bulk samples. As noted in section 2.4,
it is likely that true cellular heterogeneity is greater than the
methods are able to discriminate and that communities inferred
by our model may each conflate one or more distinct cell types
and clones. We observe that the metastatic community C4|M
most prominently contributes to the enrichment for functions
related to neurotransmitter and ion transport, since its strongest
pathways (cAMP, Calcium) are greatly enriched relative to
those of the other four communities. We might interpret this
community as reflecting at least in part stromal contamination
from neural cells specific to the metastatic site. C4|M also
contributes most to the gains of ErbB in brain samples. The
metastatic subcommunity C1|M is probably most closely related
to the loss of immune response in metastatic samples as it has
the lowest pathway values of Notch, JAK-STAT, and Cytokine-
cytokine receptor interaction. This component might thus in
part reflect the effect of relatively greater immune infiltration
in the primary vs. the metastatic site. C1|M also has the lowest
pathway values of Apoptosis,Wnt, and Hedgehog. The metastatic
community C2|M is most responsible for the loss of PI3K-Akt
and TGF-beta pathways. We also note that although RET does
not show up in the list of Table 2, it seems to be quite over-
expressed in themetastatic communitiesC1|M andC4|M but not
in the metastatic community C2|M.
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3.4. Phylogenies of BrM Communities
Reveal Common Order of Perturbed
Pathways
We built phylogenies of cell communities and calculated the
pathway representations of their Steiner nodes (section 2.5).
The phylogenies’ topologies provide a way to infer a likely
evolutionary history of cancer cell communities and thus their
constitutive cell types. At the same time, the perturbed pathways
along their edges suggest the order of genomic alterations or
changes in community composition.

3.4.1. Topologically Similar BrM Phylogenies
All five cell components do not appear in each BrM patient.
We analyze the distribution of communities in each patient
based on whether the community is inferred to be present in
the patient (Supplementary Material). There are four different
cases in general (Figure 4E). Case 1: all five communities are
found in the patient (majority; 18/22 patients). Case 2: only C1|M
missing (minority; 2/22). Case 3: only C2|M missing (minority;
1/22). Case 4: only C5 missing (minority; 1/22). Although not all
communities exist in Cases 2–4, the topologies are similar to that
of Case 1 and can be seen as special cases of Case 1, representing
some inferred common mechanisms of progression across all the
BrM patients.

3.4.2. Common Order of Altered Cancer Pathways
After inferring the pathway values for Steiner nodes, the most
perturbed pathways can also be found by subtracting the
pathway vectors of nodes that share an edge. We focus on
the top five gained or lost pathways along the evolutionary
trajectories and the changes of magnitude larger than 1.0
(Supplementary Material). We further examine those perturbed
cancer pathways that were specifically proposed in the study
that generated the data examined here, as well as others that
are clinically actionable (Brastianos et al., 2015; Priedigkeit
et al., 2017; Vareslija et al., 2018), i.e., ErbB, PI3K-Akt, and
RET (Figure 4E). As one may see from Case 1, the primary
community C3|P first evolves to community S3 by gaining
expressions in ErbB and losing functions in PI3K-Akt. Then,
if it continues to lose PI3K-Akt activity, it will evolve into the
metastatic community C2|M. If it gains in RET activity, it will
instead evolve intometastatic communitiesC1|M andC4|M. The
perturbed pathways along the trajectories of Cases 2–4 are similar
to those of Case 1, with minor differences. We therefore draw to
the conclusion that the evolution of BrMs follows a specific and
common order of pathway perturbations. Specifically, the gain
of ErbB reproducibly happens before the loss of PI3K-Akt and
the gain of RET. Different subsequently perturbed pathways lead
to different metastatic tumor cell communities. These inferences
are consistent with the hypothesis that at least some major
changes in expression programs between primary and metastatic
communities occur by selecting for heterogeneity present early
in tumor development rather than solely deriving from novel
functional changes immediately prior to or after metastasis.

4. DISCUSSION

Cancer metastasis is usually a precursor to mortality with no
successful treatment options. Better understanding mechanisms
of metastasis provides a potential pathway to identify new
diagnostics or therapeutic targets that might catch metastasis
before it ensues, treat it prophylactically, or provide more
effective treatment options once it occurs. The present work
developed a computational approach intended to better
reconstruct mechanisms of functional adaption from multisite
RNA-Seq data to help us understand at the level of cancer
pathways the mechanisms by which progression frequently
proceeds across a patient cohort. Our method compresses
expression data into a gene module/pathway representation
using external knowledge bases, deconvolves the bulk data into
putative cell communities where each community contains a set
of associated cell types or subclones, and builds evolutionary
trees of inferred communities with the goal of reconstructing
how these communities evolve, adapt, and reconfigure their
compositions across metastatic progression. Results on semi-
simulated data show the method to yield improved accuracy
in mixture deconvolution relative to prior deconvolution
algorithms. We applied the pipeline to matched transcriptome
data from 22 BrM patients and found that although there are
slight differences of tumor communities across the cohort,
most patients share a similar mechanism of tumor evolution
at the pathway level. Specifically, the methods infer a fairly
conserved mechanism of early gain of ErbB prior to metastasis,
followed post-metastasis gain of RET or loss of PI3K-Akt
resulting in intertumor heterogeneity between samples. Our
methods provide a novel way of viewing the development of BrM
with implications for basic research into metastatic processes
and potential translational applications in finding markers
or drug targets of metastasis-producing clones prior to the
metastatic transition.

The results suggest several possible avenues for future
development. In part, they suggest a need for better separating
phylogenetically-related mixture components (i.e., distinct
tumor cell clones) from unrelated infiltrating cell types (e.g.,
healthy stroma from the primary or metastatic site or infiltrating
immune cells). The methods are likely finding only a small
fraction of the true clonal heterogeneity of the tumors and
stroma, and might benefit from algorithms capable of better
resolution or from integration of multi-omics data (e.g., RNA-
Seq, DNA-Seq, methylation) that might have complementary
value in finer discrimination of cell types. The present methods
are also using only a limited form of temporal constraint in
considering a two-stage progression process and without use
of quantitative time measurements. Models might be extended
in future work to consider true time-series data, such as is
becoming available through “liquid biopsy” technologies. In
addition, we know of no data with known ground truth that
models the kind of progression process studied here nor of
other tools designed for modeling similar progression processes
from expression data, leaving us reliant on validating based on
consistency with prior research on brain metastasis (Brastianos
et al., 2015; Priedigkeit et al., 2017; Vareslija et al., 2018). Future
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work might compare to prior approaches for reconstruction of
clonal evolution from expression data more generically (Desper
et al., 2004; Riester et al., 2010; Schwartz and Shackney, 2010)
and seek replication on additional real or simulated expression
data or artificial mixtures of different cell types (Qiu et al., 2011)
designed to mimic metastasis-like progression. The general
approach might also have broader application than studying
metastasis, for example in reconstructing mechanisms of other
progression processes, such as pre-cancerous to cancerous, as
well as to other tumor types or independent data sets. Finally,
much remains to be done to exploit the translational potential
of the method in better identifying diagnostic signatures
and therapeutic targets, and what type of effective and safe
clinical strategies can be taken to prevent metastasis at an early
stage.
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