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Tumor origin and progression

• Cancers are mainly caused by somatic genomic alterations (SGAs)
• Driver SGAs (~10s/tumor): Promote tumor progression
• Passenger SGAs (~100s/tumor): Neutral mutations
• How to distinguish drivers from passengers?
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Cancer drivers

• How to distinguish drivers from passengers?
• Frequency: recurrent mutations more likely to be drivers

• Conserved domain: protein function significantly disturbed

• All unsupervised. But drivers are defined as mutations that promote to 
tumor development…
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Cancer drivers

• Identify driver SGAs with 
supervision of downstream 
phenotypes

• Change of RNA expression
• Differentially expressed 

genes (DEGs)

• Candidate models
• Bayesian model (C Cai et al. 2019)

• Lasso/Elastic net (R Tibshirani
1994)

• Multi-layer perceptrons
(MLPs) (F Rosenblatt 1958)

• Models do prediction & 
driver detection?
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Model (?) that
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Self-attention mechanism

• Models do prediction & 
driver detection?

• Attention mechanism
• Initially in CV (K Xu et al. 

2015)/NLP (A Vaswani et al. 2017)

• Better interpretability
• Improves performance

• Self-attention mechanism (Z 
Yang et al. 2016)

• Contextual deep learning 
framework: weights 
determined by all the input 
mutations
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Model with self-attention that
predicts DEGs accurately
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Genomic impact transformer (GIT)

• Transformer: encoder-decoder architecture
• Encoder: self-attention mechanism; Decoder: MLP
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Encoder: Multi-head self-attention

• Tumor embedding is the weighted 
sum of gene embeddings:

• Weights determined by input gene 
embeddings:
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Pre-training gene embedding: Gene2Vec

• Co-occurrence pattern (e.g., mutually exclusive alterations)
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Improved performance in predicting DEGs

• Predicting DEGs from SGAs
• Conventional models
• Ablation studies
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Candidate drivers via attention mechanism
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Gene embedding space

• Functionally similar genes are close in gene embedding space
• Qualitatively and quantitatively (i.e., GO enrichment, NN accuracy)
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Tumor embedding: Survival analysis

• Tumor embeddings reveal distinct survival profiles
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Tumor embedding: Drug response

• Tumor embeddings are predictive of drug response
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Conclusions and future work

• Biologically inspired neural network framework
• Identifying cancer drivers with supervision of DEGs
• Accurate prediction of DEGs from mutations

• Side products
• Gene embedding: informative of gene functions
• Tumor embedding: transferable to other phenotype prediction tasks

• Code and pretrained gene embedding:
https://github.com/yifengtao/genome-transformer

• Future work
• Fine-grained embedding representation in codon level
• Tumor evolutionary features, e.g., hypermutability, intra-tumor 

heterogeneity
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Quantitative measurement of gene embeddings

• Functional similar genes à closer in embedding space
• Go enrichment:

• NN accuracy:
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Tumor embedding space
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Gene2Vec algorithm
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Gene2Vec: Co-occurrence patterns

• Co-occurrence does not necessarily mean similar embeddings
• Ex 1: two cats sit there .
• Ex 2: two cats stand there .
• Ex 3: two dogs sit there .
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