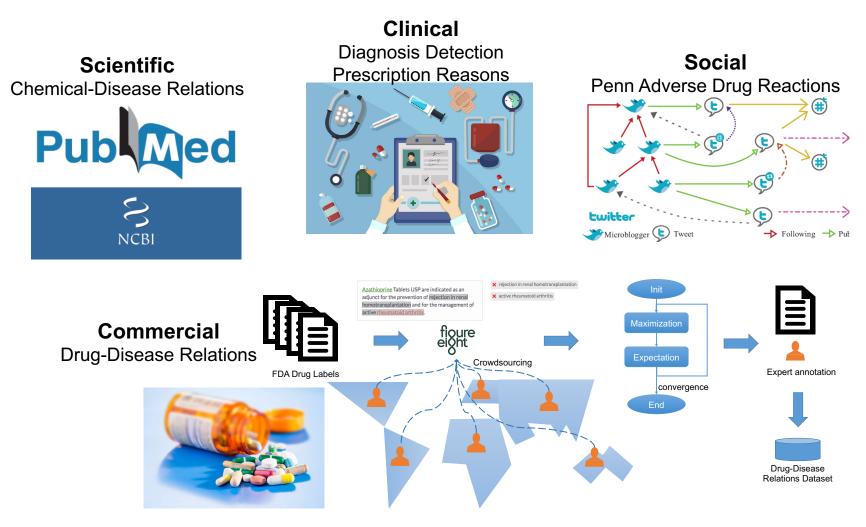
Effective Feature Representation for Clinical Text Concept Extraction

Yifeng Tao^{1,2}, Bruno Godefroy¹, Guillaume Genthial¹, Christopher Potts^{1,3,*}

¹Roam Analytics ²Carnegie Mellon University ³Stanford University

Background: Healthcare Text Datasets

o Crucial information of healthcare recorded only in free-form text

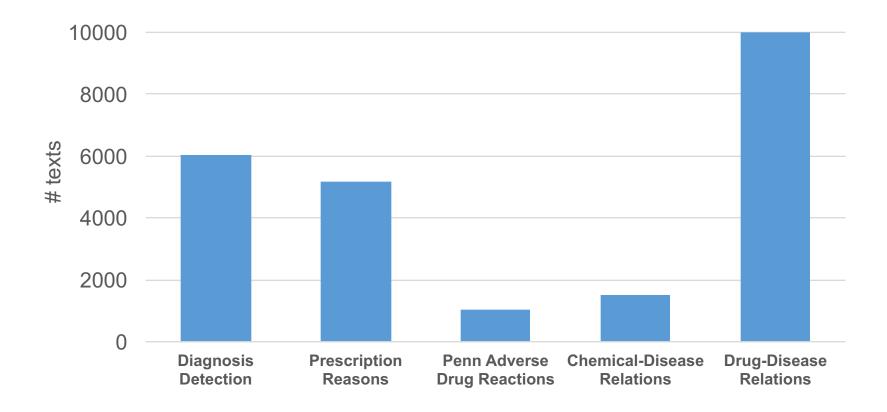


NAACL Clinical NLP 2019

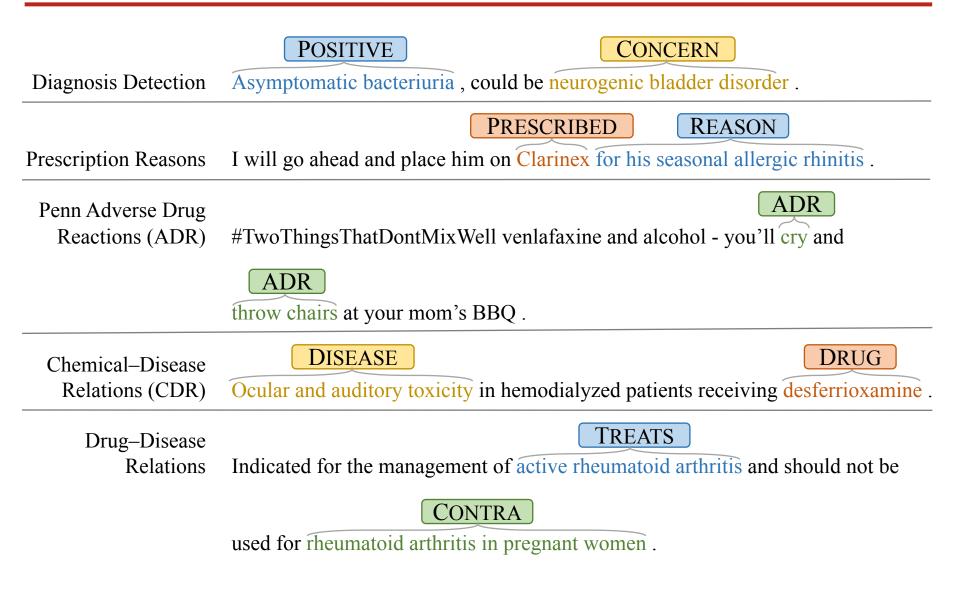
Background: Healthcare Text Datasets

 $_{\odot}\text{Clinical text}$ datasets are scarce and expensive

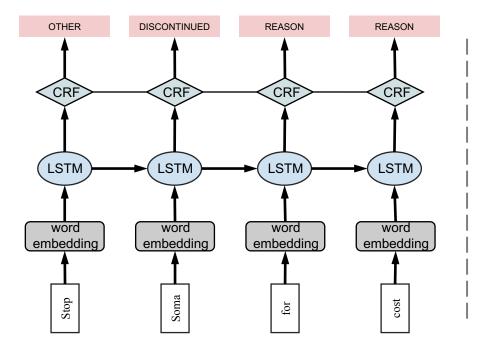
- Privacy considerations
- o Domain specialists

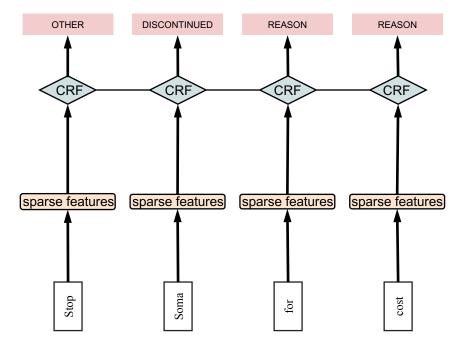


Task: Clinical Text Annotation



Previous Models





\circ LSTM-CRF

o General text

Distributed word embeddings

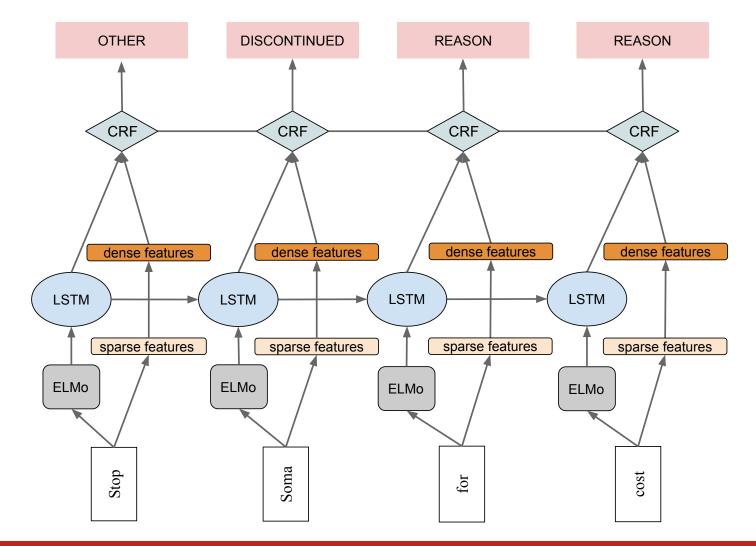
○HB-CRF

o Clinical text

Sparse hand-built features

Model: ELMo-LSTM-CRF-HB

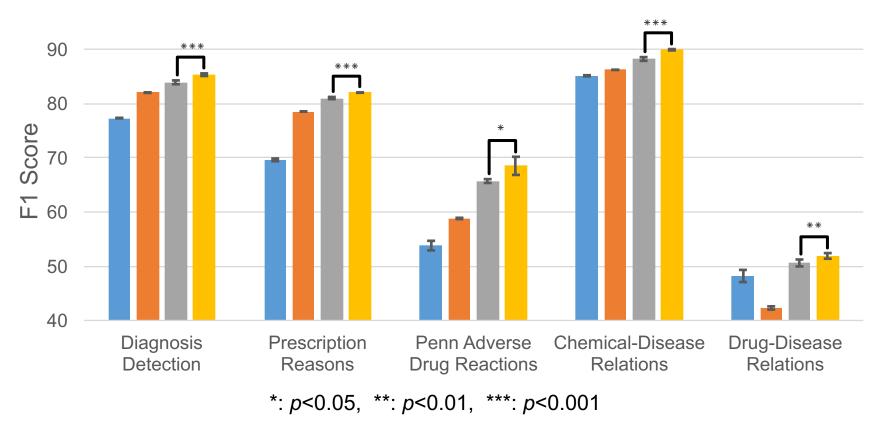
ODense ELMo word embeddings + Sparse hand-built features



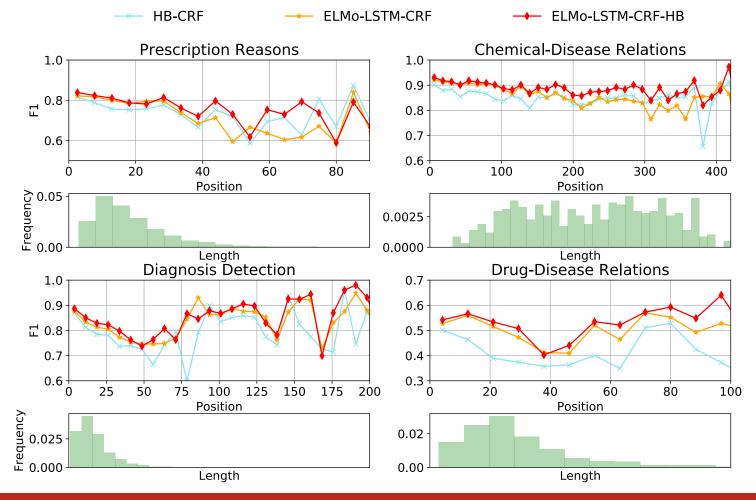
Performance: Per-token Macro-F1 Scores

Hyperparameters tuned through cross-validation
 Each experiment repeated for five times

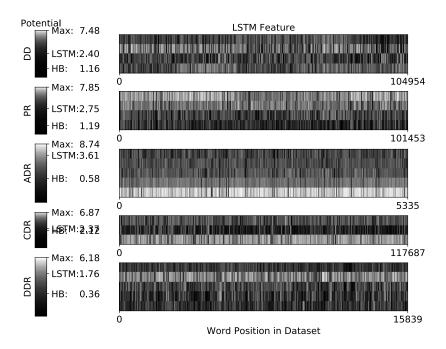
rand-LSTM-CRF HB-CRF ELMo-LSTM-CRF ELMo-LSTM-CRF-HB



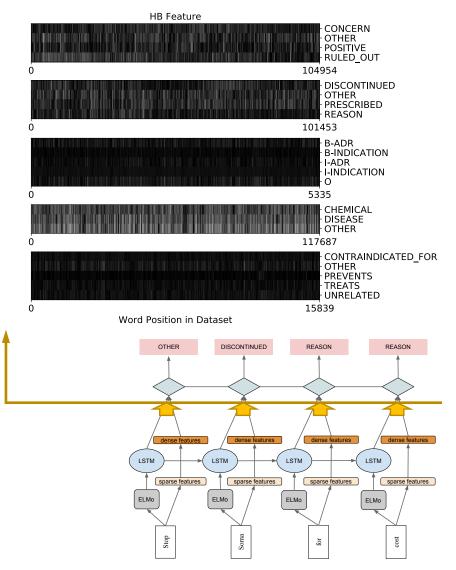
LSTM: handles short texts wellHB-CRF: robust on long texts



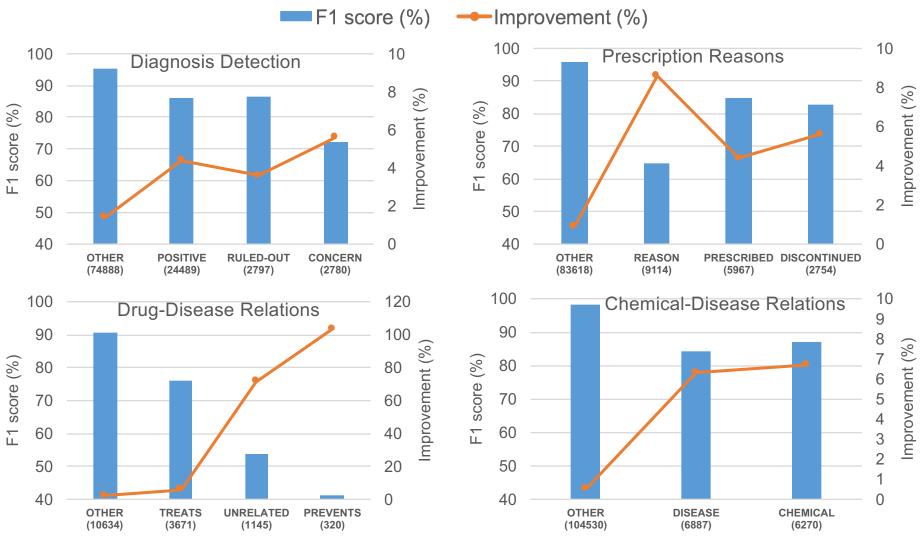
CRF Potential Scores



- LSTM features always more important
- HB features make substantial contribution



Major Improvements in Minor Categories



Label/Category (Support)

Conclusion

oA unified feature representation for clinical text sequence labeling

- Sparse, ontology-driven features
- \circ Dense LSTM features

• Best performance on five distinct healthcare datasets

- ${\scriptstyle \circ}$ Takes advantages of both feature types
- o Makes maximal use of small, expensive, domain-specific healthcare texts
- oA new labeled clinical dataset
 - o Identifies the treatment relations between drugs and diseases

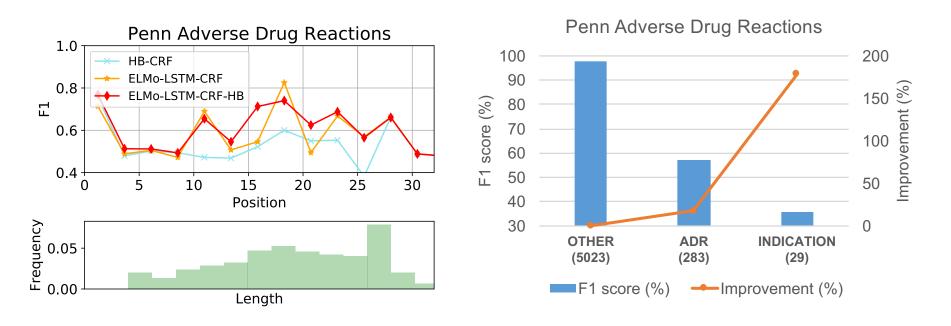
 Extensive analysis to identify what information our model makes use of, and why its performance is consistently improved

Acknowledgement

oRoam Analytics

- Christopher Potts
- Bruno Godefroy
- o Guillaume Genthial
- \circ Kevin Reschke
- \circ NLP Group

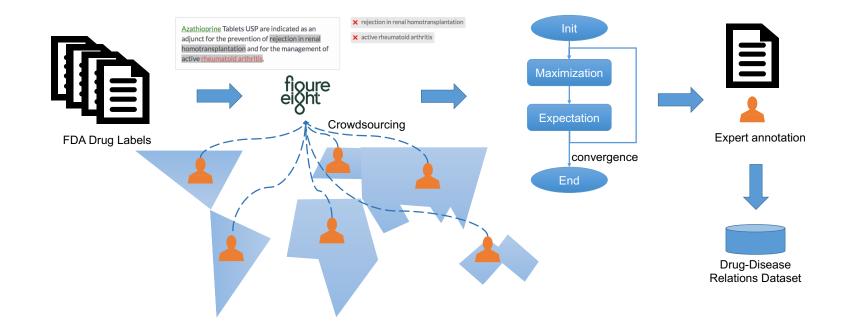
Penn Adverse Drug Reactions (ADR) Results



The Role of Text Length Major Improvements in Minor Categories

Sentence	Hand-built features of word <i>bacteria</i>					
antiseptic	Adjacent words features:					
handwash	word-4:antiseptic, word-3:handwash, word-2:to, word-1:decrease,					
to	word:bacteria, word+1:on, word+2:the, word+3:skin, word+4:					
decrease	Adjacent POS tags features:					
bacteria	tag-4:JJ, tag-3:NN, tag-2:TO, tag-1:VB,					
on	tag:NNS, tag+1:IN, tag+2:DT, tag+3:NN, tag+4:					
the	Semantic environment features:					
skin	bias:1, is_upper:0, is_title:0, is_punctuation:0,					
	in_left_context_of_negative_cues:0,	in_right_context_of_negative_cues:0,				
	in_left_context_of_prevents_cues:0,	in_right_context_of_prevents_cues:0,				
	in_left_context_of_treats_cues:0,	in_right_context_of_treats_cues:0,				
	in_left_context_of_treats_symptoms_cues:0, in_right_context_of_treats_symptoms_cues:0,					
	in_left_context_of_contraindicated_cues:0,	in_right_context_of_contraindicated_cues:0,				
	in_left_context_of_affliction_adj_cues:0,	in_right_context_of_affliction_adj_cues:0,				
	in_left_context_of_indication_cues:0,	in_right_context_of_indication_cues:0,				
	in_left_context_of_details_cues:0,	in_right_context_of_details_cues:0.				

Procedure for Building Drug-Disease Relations Dataset



Statistics	Diagnosis Detection	Prescription Reasons	Penn Adverse Drug Reactions (ADR)	Chemical–Disease Relations (CDR)	Drug–Disease Relations
# texts	6042	5179	_	_	_
# training texts	_	_	749	1000	9494
# test texts	_	_	272	500	500
mean text length	17	19	19	227	30
max text length	374	258	40	623	542
# labels	4	4	5	3	5

Hyperparameters of Experiments

Models	Hyperparams	Diagnosis Detection	Prescription Reasons	Penn Adverse Drug Reactions (ADR)	Chemical–Disease Relations (CDR)	Drug–Disease Relations
rand-LSTM-CRF	$\eta \\ ext{epoch}_{ ext{train}} \\ ext{epoch}_{ ext{train}} \\ ext{\mathcal{R}_{c1}} \\ ext{\mathcal{R}_{c2}} \end{cases}$	1e-4 3 34	1e-4 3 40	1e-4 513 3076 { 0, 3e-5, 1e-4, 3e-4 { 0, 3e-4, 1e-3, 3e-3	1e-4 10 164 , 1e-3 } , 1e-2 }	1e-4 13 130
HB-CRF	$\eta \\ ext{epoch}_{ ext{train}} \\ ext{epoch}_{ ext{train}} \\ ext{\mathcal{R}_{c1}} \\ ext{\mathcal{R}_{c2}} \end{cases}$	1e-2 1 3	1e-2 1 4	3e-2 10 82 { 0, 3e-6, 1e-5, 3e-5 { 0, 3e-5, 1e-4, 3e-4	1e-2 2 10 5, 1e-4 } , 1e-3 }	1e-4 3 35
ELMo-LSTM-CRF	$\eta \\ ext{epoch}_{ ext{train}} \\ ext{epoch}_{ ext{train}} \\ ext{} \mathcal{R}_{c1} \\ ext{} \mathcal{R}_{c2} \end{cases}$	1e-3 1 3	1e-3 1 4	1e-4 10 82 { 0, 3e-5, 1e-4, 3e-4 { 0, 3e-4, 1e-3, 3e-3	1e-3 2 10 4, 1e-3 } 5, 1e-2 }	5e-6 3 35
ELMo-LSTM-CRF-HB	$\eta \\ ext{epoch}_{ ext{train}} \\ ext{\mathcal{R}_{c1}} \\ ext{\mathcal{R}_{c2}} \end{cases}$	1e-3 1 3	1e-3 1 4	1e-4 10 82 { 0, 3e-7, 1e-6, 3e-6 { 0, 3e-6, 1e-5, 3e-5		1e-5 3 35