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Abstract. Metastasis is the mechanism by which cancer results in mor-
tality and there are currently no reliable treatment options once it
occurs, making the metastatic process a critical target for new diagnos-
tics and therapeutics. Treating metastasis before it appears is challeng-
ing, however, in part because metastases may be quite distinct genom-
ically from the primary tumors from which they presumably emerged.
Phylogenetic studies of cancer development have suggested that changes
in tumor genomics over stages of progression often results from shifts
in the abundance of clonal cellular populations, as late stages of pro-
gression may derive from or select for clonal populations rare in the pri-
mary tumor. The present study develops computational methods to infer
clonal heterogeneity and temporal dynamics across progression stages
via deconvolution and clonal phylogeny reconstruction of pathway-level
expression signatures in order to reconstruct how these processes might
influence average changes in genomic signatures over progression. We
show, via application to a study of gene expression in a collection of
matched breast primary tumor and metastatic samples, that the method
can infer coarse-grained substructure and stromal infiltration across the
metastatic transition. The results suggest that genomic changes observed
in metastasis, such as gain of the ErbB signaling pathway, are likely
caused by early events in clonal evolution followed by expansion of minor
clonal populations in metastasis (Algorithmic details, parameter settings,
and proofs are provided in an Appendix with source code available at
https://github.com/CMUSchwartzLab/BrM-Phylo).
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1 Introduction

Metastatic disease is the primary mechanism by which cancer results in patient
mortality [6,7]. By the time metastases have appeared, there are generally no
viable treatment options [14]. Successful treatment thus depends on treating
not just the primary tumor but the seeds of metastasis that may linger after
a seemingly successful remission. Identifying successful treatment options for
metastasis is problematic, however, since the genomics of primary and metastatic
tumors may be quite different even in single patients and metastatic cell pop-
ulations may be poorly responsive to therapies effective on the primary tumor.
Studies of cell-to-cell variation in cancers have revealed often substantial clonal
heterogeneity in single tumors, with clonal populations sometimes dramatically
shifting across progression stages [13]. Phylogenetic studies of clonal populations
have been inconclusive on the typical evolutionary relationships between primary
and metastatic tumors [35] and it remains a matter of debate whether changes
in clonal composition occur primarily through ongoing clonal evolution, which
results in novel clones with metastatic potential and resistance to therapy, or
from selection on existing clonal heterogeneity already present at the time of
first treatment [5,10]. The degree to which either answer is true has impor-
tant implications for prospects for early detection or prophylactic treatment of
metastasis.
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Fig. 1. The pipeline of BrM phylogenetics using matched bulk transcriptome.
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Brain metastases (BrMs) occur in around 10%-30% of metastatic breast
cancers cases [26]. Although recent advances in the treatment of metastatic
breast cancer have been able to achieve long-term overall survival, there are
limited treatment options for BrMs and clinical prognoses are still disappoint-
ing [41]. Recent work examining transcriptomic changes between paired primary
and BrM samples has demonstrated dramatic changes in expression programs
over metastasis, including changes in tumor subtype with important implications
for treatment options and prognosis [31,38]. Some past research has sought to
infer phylogenetic models to explain the development of brain metastases based
on somatic genomic alterations [4,21]. Such methods are challenged in draw-
ing robust conclusions about recurrent progression processes, though, by the
high heterogeneity both within single tumors and across progression stages and
patients. Changes in the activity of particular genetic pathways or modules may
provide a more robust measure of frequent genomic alterations across cancers.

In the present work, we develop a strategy for tumor phylogenetics to explore
how changes in clonal composition, via both novel molecular evolution and shifts
in population dynamics of tumor clones and associated stroma, influence changes
in expression programs across such progression stages. Our methods make use of
multi-site bulk transcriptomic data to profile changes evident in gene expression
programs between clones and progression stages. We break from past work in
this domain in that we seek to study not clones per se, as is typical in tumor
phylogenetics, but what we dub “cell communities”: collections of clones or other
stromal cell types that persist as a group with similar proportions across sam-
ples (Sect. 2.4). We accomplish this via a novel genomic deconvolution approach
designed to make use of multiple samples both within and between patients [306]
while improving robustness to inter- and intra-tumor heterogeneity by integrat-
ing deconvolution with pathway-based analyses of expression variation [30].

2 Methods

2.1 Overview

Cell populations evolve due to genomic perturbations that can result in changes
in the activity of various functional pathways between clones. Our overall method
for deriving coarse-grained portraits of cell community evolution at the path-
way level is illustrated by Fig. 1. After the preprocessing of transcriptome data
(Sect. 2.2), the overall workflow consists of three main steps: First, the bulk
expression profiles are mapped into the gene module and pathway space using
external knowledge bases to reduce redundancy, noise, sparsity, and to provide
markers of expression variation for the subsequent analysis (Sect. 2.3). Second,
a deconvolution step is implemented to resolve cell communities, i.e., coarse-
grained mixtures of cell types presumed to represent an associated population of
cancer clones and stromal cells, from the compressed pathway representation of
samples (Sect.2.4). Third, phylogenies of these cell communities are built based
on the deconvolved communities as well as inferred ancestral (Steiner) commu-
nities to reconstruct likely trajectories of evolutionary progression by which cell
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Fig. 2. Method details. (a) Neural network architecture of NND. (b) Test errors of
NND using 20-fold CV. Errors in unit of mean square error (MSE). (c) Illustration of
a phylogeny with five extant nodes and three Steiner nodes.

communities develop—through a combination of genetic mutations, expression
changes, and changes in population distributions—as a tumor progresses from
healthy tissue to primary and potentially metastatic tumor (Sect.2.5).

2.2 Transcriptome Data Preprocessing

We applied a series of preprocessing methods, including quantile normaliza-
tion [1], to the raw bulk RNA-Sequencing data of 44 matched primary breast
and metastatic brain tumors from 22 patients [31,38]. See Appendix Sect. A1 for
detailed protocols of data preprocessing.

2.3 Mapping to Gene Modules and Cancer Pathways

The mapping step compresses the high dimensional data and provides markers
of cancer-related biological processes (Fig.1 Step 1). Gene Modules: Genes in
the same “gene modules” [8,37] are usually affected by a common set of somatic
alterations [30], and therefore are co-expressed in cells. We mapped the protein-
coding gene expressions into gene modules using the DAVID tool and external
knowledge bases [17,18]. The z-scores of m; = 109 gene modules in all the
n = 44 samples were represented as a matrix By, € R™*" Cancer Pathways:
We extracted the 23 cancer-related pathways from the KEGG database [19].
An additional recurrently gained RET pathway was added [38]. See y-axis of
Fig. 3d for the complete list of pathways. z-scores of my = 24 cancer pathways
were represented as Bp € R"2%™. In summary, the raw gene expressions were
compressed into the gene module/pathway representation B = [B]TW,BHT €
R™*™ The gene module serves for accurately deconvolving and unmixing the cell
communities, while the pathway serves as markers/probes and for interpretation
purpose. We will refer to the compressed representation containing both gene
modules and pathways as “pathway representation” for brevity if not specified.
See Appendix Sect. A2 for further details of the mapping.

2.4 Deconvolution of Bulk Data

We applied a type of matrix factorization (MF) with constraints on the pathway-
level expression signatures to deconvolve the communities/populations from
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primary and metastatic tumor samples (Fig.1 Step 2) [22]. Note that com-
mon alternatives, such as principal components analysis (PCA) and non-negative
matrix factorization (NMF) [23] are not amenable to this case, since PCA does
not provide a feasible solution to the constrained problem, and the NMF does
not apply to our mixture data which can be either positive or negative.

Cell Communities. We define a cell community to be a set of clones/clonal
subpopulations and other cell types that propagate as a group during the evolu-
tion of a tumor. A community may be just a single subpopulation/clone, but is a
more general concept in the sense that it usually involves multiple related clones
and their associated stroma. For example, a set of immunogenic clones and the
immune cells infiltrating them might collectively form a community that has a
collective expression signature mixing signatures of the clones and associated
immune cells, even if the individual cell types are not distinguishable from bulk
expression data alone. While much work in this space has classically aimed to
separate individual clones, or perhaps individual cell types more broadly defined,
we note that deconvolution may be unable in principle to resolve distinct cell
types if they are always co-located in similar proportions. Particularly when
data is sparse and cell types are fit only approximately, as in the present work,
a model with large complexity to deconvolve the fine-grained populations is
prone to overfit. The community concept is intended in part to better describe
the results we expect to achieve from the kind of data examined here and in
part because identifying these communities is itself of interest in understanding
how tumor cells coevolve with their stroma during progression and metastasis.
Single-cell methods may provide an alternative, but are not amenable to pre-
served samples such as are needed when retrospectively studying primary tumors
and metastases that may have been biopsied years apart.

Formulation of Deconvolution. With a matrix of bulk pathway values
B € R™*", the deconvolution problem is to find a component matrix C =
[C],;.CL]" € R™*F that represents the inferred fundamental communities of
tumors, and the corresponding set of mixture fractions F € Rﬁ_x”:

. 2
min  ||B — CF|lg, (1)
s.t. Flj > 07 = 1, ...,k, ] = 1,...,n7 (2)
k
ZH Fij =1, j=1,.,n, (3)

where [|X||p; is the Frobenius norm. The column-wise normalization in Eq. (3)
aims for recovering the biologically meaningful cell communities. In addition,
they are equivalent to applying ¢, regularizers and therefore enforce sparsity to
the fraction matrix F (Appendix Fig. 5).

Neural Network Deconvolution. Although it is possible to build new algo-
rithms for solving MF by adapting previous work [23], the additional but nec-
essary constraints of Egs. (2-3) make the optimization much harder to solve.
For the problem Egs. (1-3), one can prove that it does not generally guarantee
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convexity (Appendix Sect. A3.1). A slightly modified version of the algorithm
to solve NMF with constraints may guarantee neither good fitting nor conver-
gence [25]. Therefore, instead of revising existing MF algorithms, such as ALS-
FunkSVD [3,12,22], we developed an algorithm which we call “neural network
deconvolution” (NND) to solve the optimization problem using gradient descent.
Specifically, the NND was implemented using backpropagation in the form of a
neural network (Fig.2a) with PyTorch package (https://pytorch.org/) [20,34],
based on the revised constraints:

. 2
Juin  ||B—CF|, (4)

>+ par

st. F=cwn(|Fpul), (5)

where |X| applies element-wise absolute value, cwn (X) is column-wise normal-
ization, so that each column sums up to 1. The two operations of Eq. (5) naturally
rephrase and remove the two constraints in Egs. (2-3), and meanwhile fit the
framework of neural networks. This implementation is easy to adapt to a wide
range of optimization scenarios with various constraints, and has the flexibility
of allowing for cross-validation to prevent overfitting.

Cross-Validation of NND. In order to find the best tradeoff between model
complexity and overfitting, we used cross-validation (CV) with the “masking”
method to choose the optimal number of components/communities £ = 5 that
has the smallest test error (Fig.2b). Note that the actual number of cell pop-
ulations is probably considerably larger than 5, and therefore each one of the
five communities may contain multiple cell populations. Furthermore, it is likely
that with sufficient numbers and precision of measurements, these communities
could be more finely resolved into their constituent cell types. However k = 5
represents the largest hypothesis space of NND model that can be applied to
the current dataset without severe overfitting.

See Appendix for details of NND, including architecture specifica-
tions (Sect. A3.2), hyperparameters (Sect.A3.3), evaluation of fitting ability
(Sect. A3.4), sparsity of results (Sect. A3.5), and cross-validation implementa-
tion (Sect. A3.6).

2.5 Phylogeny of Inferred Cell Subcommunities and Pathway
Inference of Steiner Nodes

We built “phylogenies” of cell subcommunities and estimated the pathway rep-
resentation of unobserved (Steiner) nodes [27] inferred to be ancestral to them,
with the goal of discovering critical communities that appear to be involved in
the transition to metastasis and identifying the important changes of functions
and expression pathways during this transition (Fig.1 Step 3). Note that we are
using the term “phylogeny” loosely here, as these trees are intended to capture
evolution of populations of cells not just by accumulation of mutations from a
single ancestral clone but also changes in community structure, for example due
to generating or suppressing an immune response or migrating to a metastatic
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site. Although an abuse of terminology, we use the term phylogeny here to make
clear the methodological similarity to more proper phylogenetic methods in wide
use for analyzing mutational data in cancers [35].

Phylogeny of Communities. Given the pathway profiles of the extant com-
munities at the time of collecting tumor samples C € R™**  a phylogeny of
the k extant cell communities was built using the neighbor-joining (NJ) algo-
rithm [29], which inferred a tree that contains k extant nodes/leaves, k — 2
unobserved Steiner nodes, and edges connecting two Steiner nodes or a Steiner
node and an extant node. We estimated an evolutionary distance for any pair of
two communities u, v as the input of NJ using the Euclidean distance between
their pathway vectors ||C., — C.,||5, similar to that in a prior work [30].

Inference of Pathways. Denote the phylogeny of cell subcommunities as G =
WV, €), and V = Vs U V¢, where the indices of Steiner node Vg = {1,2, ...,k — 2},
the indices of extant nodes Vo = {k — 1, k, ..., 2k — 2}. For each edge (u,v) € &,
where 1 < u < v < 2k — 2, the first node of edge u < k — 2 is always a Steiner
node. The second node v can be either a Steiner node (v < k—2) or extant node
(v >k —1). Denote the set of weights W = {wy, = 1/dy, | (u,v) € E} (inverse
distance), where the edge length d, is the output of NJ. For each dimension i
of the pathway vectors, we consider them independently and separately, so that
each dimension of the Steiner nodes can be solved in the same way. Now let us
consider the i-th dimension (and omit the subscript ¢ for brevity) of extant nodes
Voiy = [Yk—1,Yks s Y2k—2]" = C] and Steiner nodes Vs: x = [x1, T2, ..., Tp—2] .
Figure 2c illustrates a phylogeny where &k = 5. The inference of the i-th element
in the pathway vector of the Steiner nodes can be formulated as minimizing the
following elastic potential energy U(x,y; W):

. 1 1
m}in U(x,y; W) = E iwuv(xu - 55'1))2 + § §wuv($u - yv)Qﬂ (6)
(u,v)EE (u,v)€€
v<k—2 v>k—1

which can be further rephrased as a quadratic programming problem and solved
easily. See Appendix Sect. A4 for the derivation and proof of this section.

3 Results

3.1 Gene Modules/Pathways Provide an Effective Representation

Gene expressions of samples were mapped into gene module and pathway space
in order to reduce the noise of raw transcriptome data and reduce redundancy
(Sect. 2.3). We verified that the pathway representation is effective in the sense
that it captures distinguishing features of primary/metastatic sites and individ-
ual samples well and is able to identify recurrently gained or lost pathways.

Feature Space of the Pathway Representation. As one can see in Fig. 3a,
the first principal component analysis (PCA) dimension of the pathway repre-
sentation accounts for the difference between primary and metastatic samples,
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Fig. 3. Results and analysis. (a) First three pathway representation PCA dimensions
of matched primary and metastatic samples. Matched samples are connected. (b) Hier-
archical clustering of tumor samples based on raw gene expressions (left panel) and
compressed gene module/pathway representation (right panel). Metastatic samples are
shown in red rectangles and primary ones in yellow. (¢) Portions and changes of the
five communities in primary and metastatic sites. Each gray line connects the portions
of a community in the primary site (blue node) and metastatic site (red node) from
the same patient. (d) Pathway strengths across cell communities. (e) Phylogeny of cell
subcommunities. (Color figure online)

while the second and third PCA dimensions mainly capture variability between
patients. This observation suggests the feasibility of using the pathway represen-
tation to distinguish recurrent features of metastatic progression across patients
despite heterogeneity between patients. To make a direct comparison of the noise
and redundancy between the pathway and raw gene expression representations,
we applied hierarchical clustering to the 44 samples using Ward’s minimum vari-
ance method [39]. Two hierarchical trees were built based on the two different
representations (Fig.3b). The gene module/pathway features more effectively
separate the primary and metastatic samples into distinct clusters (Fig. 3b right
panel) than do the raw gene expression values (Fig. 3a left panel). This is con-
sistent with the PCA results that the largest mode of variance in the pathway
representation distinguishes primary from metastatic samples. We do notice that
in a few cases, matched primary and metastatic samples from the same patient
are neighbors with pathway-based clustering. For example, 29P_Pitt:29M_Pitt
and 51P_Pitt:51M_Pitt are grouped in the same clades using the pathway rep-
resentation, showing that in a minority of cases, features of individual patients
dominate over primary vs. metastatic features. Following previous work [30], we
quantified the ability of the hierarchical tree to group the samples of the same



Phylogenies of Matched Transcriptome in Breast Cancer Brain Metastases 11

labels using four metrics. 1. MSD: Mean square distance of edges that connect
nodes of the same label (primary vs. metastatic). 2. zysp: The labels of all nodes
were shuffled and the MSD is recalculated for 1,000 times to get the mean pysp
and standard deviation opsp, which were used to get the z-score of the current
assignment zysp = (MSD — pmsp)/omsp - 3. tMSD: The ratio of MSD of edges
that connect same label nodes and MSD of edges that connect distinct label
nodes. 4. zyvsp: as with MSD, a z-score of rMSD was calculated by shuffling
labels for 1,000 times. Intuitively, the smaller values the MSD, zygp, rMSD,
and z.vsp are, the better is the feature representation at grouping same label
samples together. The shortest paths and distances between all pairs of nodes
were calculated using the Floyd-Warshall algorithm [11,40]. All the edge length
were considered as 1.0 to account for the different scales of pathway and gene
representations. The pathway representation has significantly lower values for
all four metrics (Table 1), indicating its strong grouping ability.

Recurrently Perturbed Cancer Pathways. We next identified differentially
expressed pathways in the primary and metastatic tumors using bulk data
Bp € R?**# prior to deconvolving cellular subcommunities. We conducted
the Student’s t-test followed by FDR correction on each of the 24 pathways.
Eleven pathways are significantly different between the two sites (FDR < 0.05;
Appendix Table 2). The signaling pathways related to neurotransmitter and
calcium homeostasis (cAMP, Calcium [16]) are enriched in metastatic samples,
which we can suggest may reflect stromal contamination by neural cells in the
brain metastatic samples. We also observed recurrent gains in ErbB pathway,
as indicated by the primary studies [31,38]. Three pathways related to immune
activity are under-expressed in metastatic samples (Cytokine-cytokine receptor
interaction [24], JAK-STAT [24], Notch [2]), consistent with the previous infer-
ence of reduced immune cell expression in metastases in general and brain metas-
tasis most prominently [44]. We can suggest that this result similarly may reflect
expression changes in infiltrating immune cells, due to the immunologically priv-
ileged environment of the brain, rather than expression changes in tumor cell
populations. Five other signalling pathways (Apoptosis [42], Wnt [43], Hedge-
hog [15], PISK-Akt [4], TGF-beta [28]) show reduction in metastatic samples and
in each case, their loss or dysregulation has been reported to promote the tumor
growth and brain metastasis. Note that the primary references for these data
define pathways using co-expression pattern of genes [31,38], while our work uses
external knowledge bases. Previous research also used somatic mutations or copy
number variation to analyze perturbed genes [4,31], while we focus exclusively
on the transcriptome. Despite large differences in data types and pathway defi-
nitions, our observations are consistent with the prior analysis, especially with
respect to variation in the HER2/ErbB2 and PISK-Akt pathways.

3.2 Landscape of Deconvolved Cell Communities in Tumors

We unmixed the bulk data B into five components using NND (Sect. 2.4). The
deconvolution enables us to produce at least a coarse-grained landscape of major
cell communities C and their distributions in primary and metastatic tumors F.
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Table 1. Quantitative performance of hierarchical clustering.

Feature representation | MSD | rMSD | zmsp ZrMSD
Gene expression 99.62 |0.93 |—2.60 |—2.57
Gene module/pathway | 86.23 | 0.66 | —13.37 | —11.42

Community Distributions Across Samples F. The portions of the 5 com-
ponents in all the 44 samples are represented as the mixture fraction matrix
F € R (Fig.3c). A primary or metastatic community is one inferred to
change proportions substantially (magnitude > 0.05) in the tumor samples after
metastasis, or perhaps to be entirely novel to or extinct in the metastatic sam-
ple (denoted by a |P or |M suffix). Otherwise, the component is classified as
a neutral community. Three components (C1|M, C2|M, C4|M) are classified
as metastatic communities; one (C3|P) as primary; and one (C5) as neutral
(Fig. 3¢). Some components may be missing in both samples of some patients,
e.g., C1|M, C2|M, C5|M are absent in two, one, and one patient. We note that
these five communities represent rough consensus clusters of cell populations
inferred to occur frequently, but not universally, among the samples. Based on
this rule, we can define four basic cases of patients in total. Twelve subcases can
be found using a more detailed classification method based on the existence of
communities in both primary and metastatic samples (Appendix Fig. 6).

Pathway Values of Communities C. We are especially interested in the path-
way part Cp of the cell community inferences, since it serves as the marker and
provides results easier to interpret. The pathway values of five subcommunities
using Cp provides a much more fine-grained description of samples (Fig.3d),
compared with that in Sect. 3.1, which is only able to distinguish the differen-
tially expressed pathways in bulk samples. As noted in Sect. 2.4, it is likely that
true cellular heterogeneity is greater than the methods are able to discriminate
and that communities inferred by our model may each conflate one or more dis-
tinct cell types and clones. We observe that the metastatic community C4|M
most prominently contributes to the enrichment for functions related to neuro-
transmitter and ion transport, since its strongest pathways (cAMP, Calcium) are
greatly enriched relative to those of the other four communities. We might inter-
pret this community as reflecting at least in part stromal contamination from
neural cells specific to the metastatic site. C4|M also contributes most to the
gains of ErbB in brain samples. The metastatic subcommunity C'1|M is proba-
bly most closely related to the loss of immune response in metastatic samples as
it has the lowest pathway values of Notch, JAK-STAT, and Cytokine-cytokine
receptor interaction. This component might thus in part reflect the effect of rel-
atively greater immune infiltration in the primary versus the metastatic site.
C1|M also has the lowest pathway values of Apoptosis, Wnt, and Hedgehog. The
metastatic community C2|M is most responsible for the loss of PISK-Akt and
TGF-beta pathways. We also note that although RET does not show up in the
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list of Table 2, it seems to be quite over-expressed in the metastatic communities
C1|M and C4|M but not in the metastatic community C2|M.

3.3 Phylogenies of BrM Communities Reveal Common Temporal
Order of Perturbed Pathways

We built phylogenies of cell communities and calculated the pathway representa-
tions of their Steiner nodes (Sect. 2.5). The phylogenies’ topologies provide a way
to infer a likely evolutionary history of cancer cell communities and thus their
constitutive cell types, while the perturbed pathways along their edges suggest
the temporal order of genomic alterations or changes in community composition.

Topologically Similar BrM Phylogenies. All five cell components do not
appear in each BrM patient. We analyze the distribution of communities in each
patient based on whether the community is inferred to be present in the patient
(Appendix Fig.6). There are four different cases in general (Fig.3e). Case 1:
all five communities are found in the patient (majority; 18/22 patients). Case
2: only C'1|M missing (minority; 2/22). Case 3: only C2|M missing (minority;
1/22). Case 4: only C5 missing (minority; 1/22). Although not all communities
exist in Case 2-4, the topologies are similar to that of Case 1 and can be seen
as special cases of Case 1, representing some inferred common mechanisms of
progression across all the BrM patients.

Common Temporal Order of Altered Cancer Pathways. After inferring
the pathway values for Steiner nodes, the most perturbed pathways can also be
found by subtracting the pathway vectors of nodes that share an edge. We focus
on the top five gained or lost pathways along the evolutionary trajectories and
the changes of magnitude larger than 1.0 (Appendix Tables 3, 4, 5 and 6). We
further examine those perturbed cancer pathways that were specifically proposed
in the study that generated the data examined here, as well as others that are
clinically actionable [4,31,38], i.e., ErbB, PI3K-Akt, and RET (Fig.3e). As one
may see from Case 1, the primary community C3|P first evolves to community
53 by gaining expressions in ErbB and losing functions in PISK-Akt. Then, if
it continues to lose PISK-Akt activity, it will evolve into the metastatic com-
munity C2|M. If it gains in RET activity, it will instead evolve into metastatic
communities C1|M and C4|M. The perturbed pathways along the trajectories
of Cases 2—4 are similar to those of Case 1, with minor differences. We therefore
draw to the conclusion that the evolution of BrMs follows a specific and common
order of pathway perturbations. Specifically, the gain of ErbB reproducibly hap-
pens before the loss of PISK-Akt and the gain of RET. Different subsequently
perturbed pathways lead to different metastatic tumor cell communities. These
inferences are consistent with the hypothesis that at least some major changes
in expression programs between primary and metastatic communities occur by
selecting for heterogeneity present early in tumor development rather than solely
deriving from novel functional changes immediately prior to or after metastasis.
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4 Conclusions and Future Work

Cancer metastasis is usually a precursor to mortality with no successful treat-
ment options. Better understanding mechanisms of metastasis provides a poten-
tial pathway to identify new diagnostics or therapeutic targets that might catch
metastasis before it ensues, treat it prophylactically, or provide more effective
treatment options once it occurs. The present work developed a computational
approach intended to better reconstruct mechanisms of functional adaption from
multisite RNA-seq data to help us understand at the level of cancer pathways the
mechanisms by which progression frequently proceeds across a patient cohort.
Our method compresses expression data into gene module/pathway represen-
tation using external knowledge bases, deconvolves the bulk data into putative
cell communities where each community contains a set of associated cell types or
subclones, and builds evolutionary trees of inferred communities with the goal
of reconstructing how these communities evolve, adapt, and reconfigure their
compositions across metastatic progression. We applied the pipeline to matched
transcriptome data from 22 BrM patients and found that although there are
slight differences of tumor communities across the cohort, most patients share
a similar mechanism of tumor evolution at the pathway level. Specifically, the
methods infer a fairly conserved mechanism of early gain of ErbB prior to metas-
tasis, followed post-metastasis gain of RET or loss of PISK-Akt resulting in
intertumor heterogeneity between samples. Our methods provide a novel way
of viewing the development of BrM with implications for basic research into
metastatic processes and potential translational applications in finding markers
or drug targets of metastasis-producing clones prior to the metastatic transition.

The results suggest several possible avenues for future development. In part,
they suggest a need for better separating phylogenetically-related mixture com-
ponents (i.e., distinct tumor cell clones) from unrelated infiltrating cell types
(e.g., healthy stroma from the primary or metastatic site or infiltrating immune
cells). The methods are likely finding only a small fraction of the true clonal het-
erogeneity of the tumors and stroma, and might benefit from algorithms capable
of better resolution or from integration of multi-omics data (e.g., RNA-seq, DNA-
seq, methylation) that might have complementary value in finer discrimination
of cell types. Validation is challenging as we know of no data with known ground
truth that models the kind of progression process studied here nor of other tools
designed for modeling similar progression processes from expression data, leav-
ing us reliant on validating based on consistency with prior research on brain
metastasis [4,31,38]. Future work might compare to prior approaches for recon-
struction of clonal evolution from expression data more generically [9,33,36]
and seek replication on additional real or simulated expression data or artificial
mixtures of different cell types [32] designed to mimic metastasis-like progres-
sion. The general approach might also have broader application than studying
metastasis, for example in reconstructing mechanisms of other progression pro-
cesses, such as pre-cancerous to cancerous, as well as to other tumor types or
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independent data sets. Finally, much remains to be done to exploit the trans-
lational potential of the method in better identifying diagnostic signatures and
therapeutic targets.
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Appendix
A1l Transcriptome Data Preprocessing

We applied our methods to raw bulk RNA-Sequencing data of 44 matched pri-
mary breast and metastatic brain tumors from 22 patients (each patient gives
two samples) [31,38], where six patients are from the Royal College of Surgeons
(RCS) and sixteen patients from the University of Pittsburgh (Pitt). These data
profiled the expression levels of approximately 60,000 transcripts. We removed
the genes that are not expressed in any sample. We also considered only protein-
coding genes in the present study. We conducted quantile normalization across
samples using the geometric mean to remove possible artifacts from different
experiment batches [1]. The top 2.5% and bottom 2.5% of expressions were
clipped to further reduce noise. Finally, we transformed the resulting bulk gene
expression values into the log space and mapped those for each gene to the
interval [0,1] by a linear transformation.

A2 Mapping to Gene Modules and Cancer Pathways

The protein-coding gene expressions were mapped into both perturbed gene
modules and cancer pathways, using the DAVID tool and external knowledge
bases [18], as well as the cancer pathways in KEGG database [19]. This step
compresses the high dimensional data and provides markers of cancer-related
biological processes (Fig.1 Step 1).

Gene Modules. Functionally similar genes are usually affected by a common
set of somatic alterations [30] and therefore are co-expressed in the cells. These
genes are believed to belong to the same “gene modules” [8,37]. Inspired by the
idea of gene modules, we fed a subset of 3,000 most informative genes out of the
approximately 20,000 genes that have the largest variances into the DAVID tool
for functional annotation clustering using several databases [18]. DAVID maps
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each gene to one or more modules. We did not force the genes to be mapped into
disjunct modules because a gene may be involved in several biological functions
and therefore more than one gene module. We removed gene modules that were
not enriched (fold enrichment < 1.0) and kept the remaining m; = 109 modules
(and the corresponding annotated functions), where fold enrichment is defined
as the EASE score of the current module to the geometric mean of EASE scores
in all modules [17]. The gene module values of all the n = 44 samples were
represented as a gene module matrix By, € R™1*"_ The i-th gene module value
in j-th sample, Byy, ;, was calculated by taking the sum of expressions of all the
genes in the i-th module. Then Bj; was rescaled row-wise by taking the z-scores
across samples to compensate for the effect of variable module sizes.

Cancer Pathways. Although gene module representation is able to capture the
variances across samples and reduce the redundancy of raw gene expressions, it
has two disadvantages: First of all, lack of interpretability. Specifically, some
annotations assigned by DAVID are not directly related to biological functions,
and the annotations of different modules may substantially overlap. Secondly,
the key perturbed cancer pathways or functions may not be always the ones that
vary most across samples. For example, genes in cancer-related KEGG pathways
(hsa05200) [19] are not especially enriched in the top 3,000 genes with the largest
expression variances. To make better use of prior knowledge on cancer-relevant
pathways, we supplemented the generic DAVID pathway sets with a KEGG
“cancer pathway” representation of samples Bp € R™2*" where the number of
cancer pathways mgy = 24. The cancer-related pathways in the KEGG database
are cleaner and easier to explain, more orthogonal to each other, and contain
critical signaling pathways to cancer development. We extracted the 23 cancer-
related pathways from the following 3 KEGG pathway sets: Pathways in cancer
(hsa05200), Breast cancer (hsa05224), and Glioma (hsa05214). An additional
cancer pathway RET pathway was added, since it was found to be recurrently
gained in the prior research [38]. See y-axis of Fig. 3d for the complete list of 24
cancer pathways. We considered all the ~20,000 protein-coding genes other than
top 3,000 genes. The following mapping of cancer pathways and transformation
to z-scores were similar to that we did to map the gene modules.

Until this step, the raw gene expressions of n samples were transformed
into the compressed gene module/pathway representation of samples B =
[B}WBHT € R™ ™ where m = my + mo. The gene module representation
B serves for accurately deconvolving and unmixing the cell communities, while
the pathway representation Bp serves as markers/probes and for interpretation
purposes.
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A3 Deconvolution of Bulk Data

A3.1 Non-convexity of Deconvolution Problem

Theorem 1. The deconvolution problem Eqs. (1-3) below is not convex:

min f(C.F) =B~ CFl, (7)

st. Fi; >0, l=1,..,k, j=1,...n, (8)
k

lel Fj=1, j=1,..,n. (9)

Proof. If the problem is convex, we should have: YA € (0,1), and VC,,C,,F,,F,
in the feasible domain, the following inequality always holds:

M(Cy, Fz) + (1 =N f(Cy, Fy) > f(AC, + (1 — A)Cy, A\F, + (1 — N)Fy). (10)

However, for the following setting:

~1.38 092

B sl )
174 221 1.03 —0.46

Ca = [ 1.00 —3.97} ! Cy = [—3.13 0.16 } ! (12)
0.83 0.32 0.09 0.34

Fo = [0.17 0.68} ! Fy = [0.91 0.66} ! (13)

and A = 0.5, we have

Af(Cu,Fu) + (1 — A)f(Cy, Fy) = 4.86 < 11.74 = f(AC, + (1 — A)Cy, AF, + (1 — A)F,).
(14)

This is contradictory to Eq. (10). O

A3.2 Architecture Specifications of NND

In the NND architecture, |X| applies element-wise absolute value, cwn (X)
column-wisely normalizes X, so that each column of the output sums up to
1. The two operations of Eq. (5) naturally rephrase and remove the two con-
straints in Egs. (2-3), and meanwhile fit the framework of neural networks. An
alternative to the absolute value operation |X| might be rectified linear unit
ReLU(X) = max (0, X). However, this activation function is unstable and leads
to inferior performance in our case, since X;; will be fixed to zero once it becomes
negative and will lose the chance to get updated in the following iterations. One
may also want to replace the column-wise normalization cwn (X) with softmax
operation softmax(X). However, the nonlinearity introduced by softmax actu-
ally changes the original optimization problem Egs. (1-3) and the fitted F is
therefore not sparse.
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A3.3 Hyperparameters of NND

We used an Adam optimizer with default momentum parameters and learning
rate of 1 x 1075 [20]. The mini-batch technique is not required since the data
size in our application is small enough not to require it (B € R™*" m = 133,
n = 44). The training was run until convergence, when the relative decrease of
training loss is smaller than € = 1 x 10710 every 20,000 iterations.

A3.4 Fitting Ability of NND

One might be suspicious whether the neural network fits precisely in practice, since
it is based on a simple gradient descent optimization. To validate the fitting ability
of NND, we plotted the PCA of original samples B and the fitted samples B = CF
(Fig.4). One can easily see that NND provides good model fits to the data.

x
x B=CF
10 * B
x
« 5 L x
§ xxx . % X
o X xxx X x
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«~ ¥ x
-5 -
x
x
-10 0 10
PCA 1

Fig. 4. PCA of pathway representation B and nnMF fitted B. Each dot represents the
pathway values of a sample B.; or fitted ]3.]-. The first two PCA dimensions of original
data and fitted data are almost in the same positions, which indicates that NND is
able to fit precisely in our application. The number of components is set to be k = 5
here.
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Fig. 5. Distribution of elements in fraction matrix F*. Since each column of F is forced
to sum up to be one, a Laplacian prior is applied to the elements of matrix F. This
leads to the sparsity of F*: 24 out of its 220 elements (k X n = 5 x 44) are zeros
(threshold set to 2.5 x 1072).

A3.5 Sparsity of NND Results

See Fig. 5 for distribution of fraction matrix in NND deconvolution results.
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A3.6 Cross-Validation of NND

In each fold of the CV, we used B = CF to only fit some randomly selected
elements of B, and then the test error was calculated using the other ele-
ments of B. This was implemented by introducing two additional mask matrices
Mirain, Miest € {0,1}™*™, which are in the same shape of B, and Myain +
Miest = 1™*™. During the training time, with the same constraints in Eq. (5),
the optimization goal is:

. 2
Crvrll:'}ir ”Mtram © (B CF)”FF (15)

where XY is the Hadamard (element-wise) product. At the time of evaluation,
given optimized C*, Fj, , and therefore optimized F* = cwn (’F;ar’) for the
optimization problem during training, the test error was calculated on the test
set: [|[Miest @ (B — C*F*)||%r. We used 20-fold cross-validation on the NND, so

in each fold 95% positions of M. and 5% positions of Mes were 1s.

A4 Derivation of Quadractic Programming, P(W),
and q(W, c)

Recall Sect. 2.5, for the phylogeny G = (V,£), the Steiner nodes are indexed as
Vs = {1,2,....,k — 2} (|Vs| = k — 2), the extant nodes are indexed as Vo =
{k —1,k,...,2k — 2} (V| = k). The i-th pathway values of Steiner nodes are
denoted as x = [x1,2,...,2x_2]7 € R*72, and values of extant nodes as y =
[Yk—1, Yk - Y2r—2]T € R¥. Since we consider each pathway dimension separately
here, the subscript ¢ for x and y is omitted for brevity. The weight of edge
(u,v) € &€ connecting nodes u and v is wy, (1 < u < v < 2k — 2). Denote
W = {wyy | (u,v) € E}. The inference of the i-th element in the pathway vector
of the Steiner nodes can be formulated as minimizing the elastic potential energy
U(x,y; W) shown below:

1 1
m)zn U(va; W) = E iwuv (xu - 1'71)2 + E §wuﬂ(‘ru - yv)27 (16)
(u,v)€E (u,v)EE
v<k—2 v>k—1

Theorem 2. Equation (16) can be further rephrased as a quadratic program-
ming problem:

1
min imTP(W):B—i— aqWw,y)Tz, (17)
T

where POWV) is a function that takes as input edge weights W and outputs a
matriz P € RE=2XE=2) g0 ) is a function that takes as input edge weights
W and vector y and outputs a vector g € RF=2.
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Proof. Based on Eq. (16), U(x,y; W) > 0. Each term inside the first summation
(v <k —2) can be written as:
1

1
§wm)($u - xv)Z - §XTP(qu)X, (18)

where
u-th col  wv-th col

0O 0 O o O
u-th row | 0 Wyv 0 — Wy 0
P(wy.) = 0 0 0 0 Of. (19)
v-th row | O — Wy 0 Wyv 0
0O 0 O o0 O

Each term (v > k — 1) inside the second summation can be rephrased as:

1 1
iwuv(xu - %)2 - §XTP(wuv)X + q(wuva yv)TX + C(wum yv)a (20)
where
u-th col
0 0 00O 0
u-th row | O Wy 000 u-th row | =Wy Yo
P(wyy) = 0 0 000, qg(wWu,¥Y)= 0 , (21)
0 0 00O 0
0 0 000 0
and C(wyy, Yo) = %wwyg is independent of x. Therefore the optimization in

Eq. (16) can be calculated and written as below:

1 1

m)zn E ixTP(wuv)x + E <2xTP(wm,)x + q(wyy, yv)TX> , (22)
(u,v)€E (u,v)€E
v<k—2 v>k—1

o1
< min §XT Z P(wyy) + Z P(wyy) | x+ Z (W Yo)TX,

(u,v)e€ (u,v)e€ (u,v)e€
v<k—2 v>k—1 v>k—1
(23)
1
< min ixTP(W)x +aW,y)Tx. (24)
O

Remark 1. The optimal x* of the Eq. (16), or the solution to the quadratic
programming problem Eq. (17) can be solved by setting the gradient to be 0:

P(W)x* +q(W,y) = 0. (25)
Therefore,

x* = —P(W) " 'qW,y). (26)
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Remark 2. Based on the proof, we can derive how to calculate the matrix P(W)
and vector qOWV,y).
Initialize the matrix and vector with zeros:

P — O(k—2)><(k‘—2), q— Ok_2. (27)

For each edge (u,v) € £ with weight w,,, there are two possibilities of nodes u
and v: First, if both of them are Steiner nodes (u < k —2, v < k —2), we update
P and keep q the same:

Puu — Puu + Wy Pv'u — P'uv + Wy Puv — Pu'u — Wy, P'uu — Pvu — Wyw-
(28)

Second, if w is Steiner node and v is an extant node (u < k —2, v > k — 1), we
update both P and q:

Puw — Puyy + Wyvy Q< Ay — Yo * Wan- (29)

We apply the same procedure to all dimension of pathways i = 1,2, ..., m to get
the full pathway values for each Steiner node.

A5 Differentially Expressed Cancer Pathways

Table 2 provides a list of the identified differentially expressed cancer pathways.

Table 2. Differentially expressed cancer pathways between primary and metastatic
samples (FDR < 0.05).

Gain/Loss after metastasis | Differentially expressed pathways FDR

Relative gain cAMP signaling pathway 6.88e-03
Relative gain ErbB signaling pathway 2.09e-02
Relative gain Calcium signaling pathway 4.39e-02
Relative loss Cytokine-cytokine receptor interaction | 4.37e-06
Relative loss Apoptosis 8.53e-04
Relative loss JAK-STAT signaling pathway 8.53e-04
Relative loss Wnt signaling pathway 3.97e-03
Relative loss Hedgehog signaling pathway 4.50e-03
Relative loss PI3K-Akt signaling pathway 1.35e-02
Relative loss TGF-beta signaling pathway 4.56e-02
Relative loss Notch signaling pathway 4.56e-02
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A6 Portions of Cell Communities in BrM Patients
Figure 6 shows the inferred cell community portions across the BrM samples.

The figure displays, for each patient, the proportion of each community in the
primary and the metastatic sample.

A7 Perturbed Cancer Pathways Along Phylogenies

Tables 3, 4, 5 and 6 provide a full list of perturbed pathways across the phylo-
genies for Case 1, 2, 3, and 4 in Fig. 3e.

Case la (#patient: 1)  Case 1b (#patient: 1) Case 1c (#patient: 1)  Case 1d (#patient: 1)

Emm Primary
- Metastatic

ClC2C3C4C5 ClC2C3C4C5 (ClcC2C3C4C ClcC2C3C4C05
Case le (#patient: 4) Case 1f (#patient: 1) Case 1g (#patient: 1)  Case 1h (#patient: 1)

ClC2C3C4C5 (ClC2C3C4C5 (ClcC2C3C4C ClcC2C3C4C05

Case li (#patient: 7) Case 2a (#patient: 2)  Case 3a (#patient: 1)  Case 4a (#patient: 1)

0 ClC2C3C4C5 (Cl1C2C3C4C5 C1C2C3C4C5 (ClcC2C3¢cC4c05
Component Component Component Component

Fig. 6. Classification of BrM patients based on the consisted cell subcommunities in
matched samples. There are 12 subcases of the 4 cases mentioned in Sect. 3.2. Specif-
ically, there are 9 specific cases (Case la-i) in Case 1. Most patients (7) have all the
five cell communities in both primary and metastatic samples (Case 1i). A few patients
(4) have all communities in metastasis samples and all clones but community C3|P in
primary samples. The element F;; is taken as 0 when it is smaller than a threshold
2.5 x 1072, and therefore the I-th community is missing in the j-th sample.
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Table 3. Perturbed pathways during the evolution of cell communities in primary and

metastatic tumors (Fig.3e Case 1). The top five perturbed pathways whose gain or

loss greater than 1.0 along each edge of phylogeny are shown. Clinically actionable
perturbed cancer pathways during metastasis are shown in boldface, i.e., ErbB, RET,

and PISK-Akt [4,31,38).

Trajectory | Gain | Perturbed Pathways Loss | Perturbed pathways
C3|P — S3 | +2.83 | Homologous recombination —3.76 | Hedgehog signaling pathway
+2.41 | Cell cycle —3.45 | Cytokine-cytokine receptor
interaction
+1.86 | ErbB signaling pathway | —3.39 | PI3K-Akt signaling
pathway
+1.10 | cAMP signaling pathway —3.15 | TGF-beta signaling pathway
—3.14 | JAK-STAT signaling
pathway
S3 — S1 <1.0 |0 <1.0 |0
S1 — 52 +1.36 | cAMP signaling pathway —1.28 | JAK-STAT signaling
pathway
+1.18 | RET —1.22 | Apoptosis
—1.21 | Cytokine-cytokine receptor
interaction
—1.12 | Wnt signaling pathway
—1.04 | Notch signaling pathway
S2 — C1|M | +1.90 | RET —3.25 | Wnt signaling pathway
+1.59 | PPAR signaling pathway —3.11 | JAK-STAT signaling
pathway
—2.77 | Notch signaling pathway
—2.48 | Hedgehog signaling pathway
—2.18 | PIBK-Akt signaling
pathway
S2 — C4|M | +4.48 | Calcium signaling pathway —3.06 | p53 signaling pathway
+4.17 | cAMP signaling pathway —2.74 | Cell cycle
+3.83 | MAPK signaling pathway —2.21 | Homologous recombination
+3.35 | ECM-receptor interaction —1.40 | Apoptosis
+3.20 | Focal adhesion —1.33 | Cytokine-cytokine receptor
interaction
S1—C5 +3.91 | Cell cycle —3.00 RET
+3.17 | p53 signaling pathway —1.58 | MAPK signaling pathway
+2.85 | Adherens junction —1.41 | cAMP signaling pathway
+2.76 | Cytokine-cytokine receptor
interaction
+2.68 | Wnt signaling pathway
S3 — C2|M | +1.39 | Homologous recombination | —3.65 | TGF-beta signaling pathway
—3.61 | PIBK-Akt signaling
pathway
—3.34 | ECM-receptor interaction
—3.20 | Focal adhesion
—2.60 | PPAR signaling pathway
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Table 4. Perturbed pathways during the evolution of cell communities in primary and
metastatic tumors (Fig.3e Case 2). The top five perturbed pathways whose gain or

loss greater than 1.0 along each edge of phylogeny are shown.

Trajectory | Gain | Perturbed Pathways Loss | Perturbed pathways
C3|P — S1 | +2.83 | Homologous —3.22 | Hedgehog signaling
recombination pathway
+2.47 | Cell cycle —3.10 | TGF-beta signaling
pathway
+1.81 | ErbB signaling —3.08 | Cytokine-cytokine
pathway receptor interaction
+1.02 | cAMP signaling pathway | —2.93 | PI3K-Akt signaling
pathway
—2.64 | PPAR signaling pathway
51— 52 +1.08 | ECM-receptor interaction
+1.08 | ErbB signaling
pathway
S2 — C4|M | +5.51 | cAMP signaling pathway | —3.97 | Cell cycle
+5.12 | Calcium signaling —3.83 | ph3 signaling pathway
pathway
+4.45 | MAPK signaling pathway | —3.20 | Apoptosis
+3.37 | ECM-receptor interaction | —3.15 | Cytokine-cytokine
receptor interaction
+3.08 | ErbB signaling —3.00 | Homologous
pathway recombination
S2 — Cbh +3.68 | Cell cycle —2.25  RET
+3.18 | p53 signaling pathway —1.81 | MAPK signaling pathway
+2.50 | Homologous —1.43 | cAMP signaling pathway
recombination
+2.16 | Adherens junction —1.24 | Hedgehog signaling
pathway
+2.15 | Cytokine-cytokine —1.13 | Calcium signaling
receptor interaction pathway
S1 — C2|M | +1.39 | Homologous —4.06 | PI3BK-Akt signaling
recombination pathway
—3.70 | TGF-beta signaling
pathway
—3.55 | Focal adhesion
—3.52 | ECM-receptor interaction
—2.87 | Adherens junction
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Table 5. Perturbed pathways during the evolution of cell communities in primary and
metastatic tumors (Fig. 3e Case 3). The top five perturbed pathways whose gain or

loss greater than 1.0 along each edge of phylogeny are shown.

Trajectory | Gain |Perturbed Pathways Loss | Perturbed pathways
C3|P — S2 | +3.10 | Cell cycle —3.51 | Hedgehog signaling
pathway
+3.10 | ErbB signaling —2.41 | Notch signaling pathway
pathway
+2.93 | Homologous —2.39 | Cytokine-cytokine
recombination receptor interaction
+1.70 | cAMP signaling pathway | —2.34 | JAK-STAT signaling
pathway
+1.66 | HIF-1 signaling pathway | —2.07 | Apoptosis
S2 — S1 +1.62 | cAMP signaling pathway | —2.02 | Cytokine-cytokine
receptor interaction
+1.54 RET —1.98 | JAK-STAT signaling
pathway
+1.14 | Calcium signaling —1.91 | Apoptosis
pathway
—1.75 | Wnt signaling pathway
—1.32 | Cell cycle
S1— C1|M | +1.85 RET —3.52 | Wnt signaling pathway
+1.19 | PPAR signaling pathway | —3.38 | JAK-STAT signaling
pathway
—2.78 | PI3BK-Akt signaling
pathway
—2.76 | Hedgehog signaling
pathway
—2.68 | Notch signaling pathway
S1 — C4|M | +4.20 | Calcium signaling —3.18 | p53 signaling pathway
pathway
+3.89 | cAMP signaling pathway | —2.65 | Cell cycle
+3.40 | MAPK signaling pathway | —1.99 | Homologous
recombination
+2.76 | Hedgehog signaling —1.64 | Cytokine-cytokine
pathway receptor interaction
+2.72 | ECM-receptor interaction | —1.61 | Apoptosis
S2 — Ch +3.67 | Cell cycle —2.69 | RET
+2.76 | Homologous —2.08 | MAPK signaling pathway
recombination
+2.56 | p53 signaling pathway —1.59 | PPAR signaling pathway
+1.85 | mTOR signaling pathway | —1.43 | cAMP signaling pathway
+1.79 | Adherens junction —1.02 | Hedgehog signaling
pathway
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Table 6. Perturbed pathways during the evolution of cell communities in primary and
metastatic tumors (Fig.3e Case 4). The top five perturbed pathways whose gain or

loss greater than 1.0 along each edge of phylogeny are shown.

Trajectory | Gain | Perturbed Pathways Loss | Perturbed pathways
C3|P — S1 | +2.38 | Homologous —4.49 | Cytokine-cytokine
recombination receptor interaction
+1.56 | ErbB signaling —4.23 | PI3K-Akt signaling
pathway pathway
+1.54 | Cell cycle —4.10 | JAK-STAT signaling
pathway
+1.41 | cAMP signaling pathway | —3.97 | Hedgehog signaling
pathway
—3.74 | Apoptosis
S1— 52 +1.89 | cAMP signaling pathway | —1.66 | Notch signaling pathway
+1.69 | ErbB signaling —1.27 | JAK-STAT signaling
pathway pathway
+1.47 | HIF-1 signaling pathway | —1.14 | Apoptosis
+1.47 | ECM-receptor interaction | —1.01 | Cytokine-cytokine
receptor interaction
+1.43 | Calcium signaling
pathway
S2 — C1|M | +1.43 | PPAR signaling pathway | —2.53 | Notch signaling pathway
+1.19  RET —2.44 | Wnt signaling pathway
+1.09 | p53 signaling pathway —2.35 | Hedgehog signaling
pathway
—2.32 | JAK-STAT signaling
pathway
—1.66 | VEGF signaling pathway
S2 — C4|M | +4.40 | Calcium signaling —2.37 | p53 signaling pathway
pathway
+3.91 | cAMP signaling pathway | —1.93| Cell cycle
+3.81 | ECM-receptor interaction | —1.74 | Homologous
recombination
+3.64 | MAPK signaling pathway
+3.62 | Focal adhesion
S1 — C2|M | +1.84 | Homologous —3.07 | TGF-beta signaling
recombination pathway
+1.39 | Cell cycle —2.77 | PI3K-Akt signaling
pathway
—2.69 | ECM-receptor interaction
—2.59 | Focal adhesion
—2.58 | PPAR signaling pathway
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