De novo Prediction of Cell-Drug Sensitivities Using Deep Learning-based **Graph Regularized Matrix Factorization**

Overview

- The success of **precision oncology** requires the capability to accurately predict the drug sensitivity of:
- 1) new patient's cancer cell lines to existing anticancer drugs
- 2) new patient's cancer cell lines to **new** anticancer drugs
- We demonstrate that our model (DeepGRMF)
- 1) shows its superiority in **predicting drug** sensitivity in GDSC and CCLE dataset compared with competing models
- 2) could predict effectiveness of a chemotherapy regimen on patient outcomes for the lung cancer patients in TCGA dataset

Key Components:

- **1)Integrative drug embedding** that incorporates drug chemical structures, mechanisms of action (MOAs) and pathway information;
- 2)Matrix-factorization-based collaborative filtering that captures characteristic interactions between a set of similar cell lines and a set of similar drugs.
- 3)Graph-based regularization that encodes the similarity of cells and drugs in original input space.
- 4) Neural networks that accurately map a new input (a new cell or a drug) to factor space, thus performing prediction of responses between a pair of previously unseen cell and drug.

Shuangxia Ren¹, Yifeng Tao², Ke Yu¹, Yifan Xue³, Russell Schwartz², Xinghua Lu^{1,3} ¹Intelligent Systems Program, and ³Department of Biomedical Informatics, University of Pittsburgh ²Computational Biology Department, Carnegie Mellon University

		Per Cell Line		Per Drug		Micro	
t Data	Model	AUROC	AUPR	AUROC	AUPR	AUROC	AUPR
DSC	Lasso	79.1	53.8	67.1	38.2	79.3	55.4
	DeepDSC	80.0	54.8	67.7	38.8	79.9	56.4
	DeepGRMF	83.2	60.1	70.9	41.8	83.1	62.0
CLE	Lasso	79.2	67.5	66.2	38.2	74.1	50.5
	DeepDSC	80.0	68.3	67.0	40.5	75.1	51.5
	DeepGRMF	82.0	70.9	67.9	41.6	76.0	53.7

		Per Cell Line		Per Drug		Micro	
st Data	Model	AUROC	AUPR	AUROC	AUPR	AUROC	AUPR
GDSC	DeepDSC DeepGRMF	58.6 65.5	33.0 38.1	64.5 70.7	35.3 41.8	65.4 72.9	37.7 46.7

		Per Cell Line		Per Drug		Micro	
st Data	Model	AUROC	AUPR	AUROC	AUPR	AUROC	AUPR
GDSC	$\begin{array}{c} \text{DeepDSC} \\ \text{DeepGRMF} \end{array}$	58.2 64.6	31.6 36.6	55.6 61.4	28.5 33.8	59.8 66.9	31.9 38.9
CCLE	${ m DeepDSC}$ ${ m DeepGRMF}$	49.1 56.1	49.4 55.5	58.5 69.1	38.1 49.4	55.1 61.0	32.2 44.6