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Abstract

Motivation: Identifying cell types and their abundances and how these evolve during tumor progression is critical to
understanding the mechanisms of metastasis and identifying predictors of metastatic potential that can guide the
development of new diagnostics or therapeutics. Single-cell RNA sequencing (scRNA-seq) has been especially
promising in resolving heterogeneity of expression programs at the single-cell level, but is not always feasible, e.g.
for large cohort studies or longitudinal analysis of archived samples. In such cases, clonal subpopulations may still
be inferred via genomic deconvolution, but deconvolution methods have limited ability to resolve fine clonal struc-
ture and may require reference cell type profiles that are missing or imprecise. Prior methods can eliminate the need
for reference profiles but show unstable performance when few bulk samples are available.

Results: In this work, we develop a new method using reference scRNA-seq to interpret sample collections for which only
bulk RNA-seq is available for some samples, e.g. clonally resolving archived primary tissues using scRNA-seq from meta-
stases. By integrating such information in a Quadratic Programming framework, our method can recover more accurate
cell types and corresponding cell type abundances in bulk samples. Application to a breast tumor bone metastases data-
set confirms the power of scRNA-seq data to improve cell type inference and quantification in same-patient bulk samples.

Availability and implementation: Source code is available on Github at https://github.com/CMUSchwartzLab/RADs.

Contact: russells@andrew.cmu.edu

1 Introduction

Computational methods for resolving single-cell clonal evolutionary
dynamics (Greaves and Maley, 2012) have become a central part of
modern cancer genomics research as ever more powerful genomic
tools have become available and as the role of tumor heterogeneity
and clonal evolution in cancer progression have become more ap-
parent (Beerenwinkel et al., 2016). The fundamental goal of such
methods is to characterize the genetics and genomics of tumor cells
and various other cell types infiltrating them and understand how
these populations of cells predict future tumor progression and
evolve over its course. Numerous variations on this basic framework
have been developed, for different kinds of genomic data (e.g. DNA-
seq versus RNA-seq, bulk versus single-cell) or different research
questions (e.g. understanding genetic versus phenotypic evolution)
(cf., Schwartz and Schäffer, 2017). In the present work, we focus on
one specific scenario: understanding RNA evolution in settings in
which bulk and single-cell data are available for different time
points, samples or stages of progression.

Prior to the emergence of practical single-cell methods, most techni-
ques for reconstructing clonal evolution depended on genomic

deconvolution (Lu et al., 2003), in which one seeks to resolve clonal
evolution by computationally inferring activities of homogeneous cell
populations from mixtures of genomic data contained in bulk samples
(Schwartz and Shackney, 2010). Methods for this problem can roughly
be classified into two classes: partial deconvolutional algorithms, which
interpret data in terms of a reference matrix of known cell types, and
complete deconvolutional algorithms, which infer cell types de novo by
comparison of multiple samples. Examples of partial deconvolution
methods include CIBERSORT, which makes use of a pre-defined
LM22 profile matrix and CIBERSORTx (Newman et al., 2019), which
derives a profile matrix for interpreting bulk data using reference single-
cell data. See Avila Cobos et al. (2020) for a comparison of different
partial deconvolution algorithms and related data transformation meth-
ods. Examples of complete deconvolution methods include Geometric
Unmixing (Schwartz and Shackney, 2010), which proposed an arche-
type analysis method based on geometries of genomic point clouds;
DSA (Zhong et al., 2013), which treats deconvolution as a matrix fac-
torization problem; LinSeed (Zaitsev et al., 2019), which identifies a set
of anchor genes through linear correlation and uses DSA to solve for
the non-anchor genes; NND (Tao et al., 2020a), which poses partial de-
convolution problem as a matrix factorization to be solved with
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gradient descent implemented through a neural network; and RAD
(Tao et al., 2020b), which solve s the formulation of NND using a hy-
brid optimizer with improved accuracy and speed.

Single-cell genomics has rapidly displaced deconvolutional methods
for tumor genomic analysis, particularly for RNA-seq variants, as
single-cell sequencing has become reliable and cost-effective (cf.
Kuipers et al., 2017; Lim et al., 2020). Although single-cell sequencing
introduces its own computational complications and data quality
issues, having large numbers of direct single-cell measurements leads to
substantially greater resolution for single-cell variation than is possible
for deconvolutional methods even with high quality bulk data.
Nonetheless, deconvolutional methods remain necessary in practice for
a variety of real-world use cases. Single-cell data is not typically pos-
sible for older archived samples and the field still lacks large cohorts of
single-cell tumor genomic data comparable to bulk resources such as
the influential Cancer Genome Atlas (Chang et al., 2013) or
International Cancer Genome Consortium (Zhang et al., 2011) data-
sets. The problem is particularly acute for current studies of patients
being tracked longitudinally, e.g. in using clonal phylogenetics to
understand metastatic progression (Naxerova and Jain, 2015). Patients
being seen today for metastatic disease may have been first diagnosed
years earlier and characterizing their tumors’ evolution can require
comparing recent samples for which single-cell data is practical with
archived samples for which only bulk data is possible.

This work was developed specifically to address scenarios such
as this, in which one seeks to understand longitudinal progression of
a cancer by comparing samples some of which may be amenable to
single-cell methods (e.g. recent metastases) and others that can only
be examined by bulk methods (e.g. an archived primary tumor bi-
opsy). It accomplishes this by developing a hybrid algorithm to infer
genomics and clonal frequencies in both bulk and single-cell sam-
ples, using single-cell data in some samples as partial references for
bulk data in others. In this regard, it follows a strategy of mixed
bulk and single-cell data previously applied in tumor evolutionary
studies primarily with single-cell and bulk DNA-seq (Lei et al.,
2020; Malikic et al., 2019a,b; Salehi et al., 2017) or using bulk
DNA-seq to guide interpretation of single-cell RNA-seq data
(McCarthy et al., 2020; Shafighi et al., 2021). Bulk and single-cell
RNA-seq has been previously combined in bMIND (Wang et al.,
2021), although with a different goal of using paired data from
single samples to better reconstruct cell type profiles. Reference
single-cell RNA-seq has also been used to train neural networks to
deconvolve independent bulk RNA-seq data (Menden et al., 2020).
Our method poses the problem using a matrix factorization formu-
lation comparable to earlier bulk deconvolution methods, drawing
on ideas from hybrid bulk/single-cell DNA methods to integrate the
heterogeneous data sources. We demonstrate through simulated
data and real paired primary and metastatic patient data that the
method is effective at resolving cell population dynamics across time
points in comparison to more traditional deconvolution methods,
providing novel insight into how cell population dynamics can
underlie tumor progression.

2 Materials and methods

Our method can be divided into two steps: First, we infer a profile ma-
trix S to represent the single-cell data from metastatic samples. Then,
we apply a semi-deconvolution algorithm that uses elements of both
partial and complete deconvolution algorithms to avoid weaknesses
of each. The objective/loss function consists of two parts: a complete
deconvolution part, which by itself would introduce error due to the
difficulty of finding a low-dimensional approximation for a noisy
high dimensional mixture, and a partial deconvolution part, which by
itself would introduce error due to imprecise approximation of the
bulk data by single cells gathered from different samples and technolo-
gies. By combining these terms, we seek to mitigate the complemen-
tary weaknesses of each approach. The approach is particularly
effective for characterizing how population frequencies of distinct cell
types evolve over progression stages, e.g. via differential immune infil-
tration (cf. Sturm et al., 2019). Unlike other methods also using refer-
ence profiles, our method allows the inference of cell types not found

in the single-cell samples. We call our method RAD with single cells
(RADs). The operation and a high-level description of the method are
summarized in Figure 1.

2.1 Mathematical formulation of deconvolution
We aim to achieve better deconvolution by integrating information
from the noisy but informative single-cell RNA-seq via the following
constrained optimization objective:

min
C;F;l

jjB�CFjj2Fr þ kjjC1 � lSjj2Fr; (1)

s:t: Cil � 0; i ¼ 1; . . . ;m; l ¼ 1; . . . ;K; (2)

Flj � 0; l ¼ 1; . . . ;K; j ¼ 1; . . . ; n; (3)

XK

l¼1
Flj ¼ 1; j ¼ 1; . . . ; n; (4)

B 2 R
m�n
�0 is the bulk RNA-seq data and S 2 R

m�k
�0 is a preprocessed

matrix of single-cell reference data, where each row is a gene, each
column of B is a bulk sample and each column of S is a cell type/
population. k is the penalty weight that suppresses the discrepancy
between single-cell data and the inferred expression profile
matrix and l adjusts the scale of inferred single-cell references.
Additional parameters of Equations (1–4) and other auxiliary varia-
bles are defined in Table 1.

2.2 Solving the deconvolution problems
The original problem formulation Equations (1–4) is non-negative.
Inspired by previous work, we use a coordinate descent method to
obtain a possibly suboptimal solution to the problem. The coordin-
ate descent algorithm iteratively repeats three phases described
below until convergence, where in each phase, the computational
problem can be re-formulated to a tractable problem class, e.g.
quadratic programming or linear regression.

Phase 1: Optimizing fraction matrix F At this phase, we fix C

and l to optimize F. Then, Equations (1–4) is equivalent to:

min
F

jjB� CFjj2Fr; (5)

s:t: Flj � 0; l ¼ 1; . . . ; k; j ¼ 1; . . . ; n; (6)

Xk

l¼1
Flj ¼ 1; j ¼ 1; . . . ; n; (7)

Let f ¼ F�j be the column in Equation (5) representing the fre-
quency of each cell type/population in one bulk sample B�j (defined
as b). Then we can re-formulate it to minimize the error for each col-
umn of B�CF:

min
F

jjB� CFjj2Fr; (8)

() min
F

Xn

j¼1

jjB�j �CF�jjj22

" #
; (9)

() min
F�j

jjB�j � CF�jjj22; 8j ¼ 1; ::; n (10)

() min
f

jjb� Cfjj22; ðsubscript j omitted for clarityÞ (11)

() min
f

f>C>Cf � 2b>Cf þ b>b; (12)

() min
f

1

2
f>C>Cf � b>Cf (13)
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Then ðC>CÞ> ¼ C>ðC>Þ> ¼ C>C, so C>C is symmetric matrix,
and further that it will be semi-definite since
f
>C>Cf ¼ ðCfÞ>ðCfÞ � 0, establishing that Equation (13) can be

solved as a Quadratic Programming (QP) problem with the same
constraints shown in Equations (6) and (7).

Phase 2: Optimizing cell type matrix C. At this phase, we fix F
and l to optimize C, then the Equation (1) equals to:

min
C

jjB�CFjj2Fr þ kjjC1 � lSjj2Fr; (14)

s:t: Cil � 0; i ¼ 1; . . . ;m; l ¼ 1; . . . ;K; (15)

Given that not all primary cell types migrate to metastases, there
may be cell types found in the primary tumor but not in single-cell
reference samples. We therefore allow the primary tumor to have
additional cell types not found in the metastasis, by decomposing C
into C1, representing cell types found in single-cell samples, and an
auxiliary matrix C2, representing additional cell types present only
in bulk samples (Table 1). C ¼ ½C1;C2� is the horizontal concaten-
ation of C1 and C2:

c1;1 . . . c1;K

: . . . :
: . . . :
: . . . :

cm;1 . . . cm;K

2
66664

3
77775 ¼

c1;1 . . . c1;k j c1;kþ1 . . . c1;K

: . . . : j : . . . :
: . . . : j : . . . :
: . . . : j : . . . :

cm;1 . . . cm;k j cm;kþ1 . . . cm;K

2
66664

3
77775

Then Equation (14) can be rewritten as:

min
C1 ;C2

jjB� ½C1;C2�Fjj2Fr þ kjjC1 � lSjj2Fr; (16)

s:t: ðC1Þil � 0; i ¼ 1; . . . ;m; l ¼ 1; . . . ;k; (17)

ðC2Þij � 0; i ¼ 1; . . . ;m; j ¼ 1; . . . ; y; (18)

We follow coordinate descent to optimize C1 and C2 iteratively:
Phase 2.1: Optimizing C1. Let c1 ¼ C1

>
i� , which represents the

expression profile of one gene in each cell type/population.
Similarly, we define b ¼ B>i� ; s ¼ S>i� to represent the transpose of one
row of B and S, respectively. Let F ¼ ½F>1 ; F>2 �

> be the vertical con-
catenation of F1 and F2. Then we can re-formulate Equation (16) to
a standard form for C1:

min
C1

jjB� ½C1;C2�Fjj2Fr þ kjjC1 � lSjj2Fr; (19)

() min
C1

jjB� C1F1 � C2F2jj2Fr þ kjjC1 � lSjj2Fr; (20)

ð let B ¼ B� C2F2 for convenience Þ
() min

C1

jjB� C1F1jj2Fr þ kjjC1 � lSjj2Fr;
(21)

() min
C1

Xm
i¼1

jjBi� � ðC1Þi�F1jj22 þ kjjðC1Þi� � lSi�jj22

" #
; (22)

Fig. 1. Approach to semi-deconvolution using both bulk and single-cell RNA-seq to uncover the cell type dynamics across progression stages. The left scheme shows

an example of tumor sites that might lead to distinct bulk and single-cell RNA-seq samples. The right scheme shows the overall mathematical problem to solve using the bulk and

single-cell RNA-seq. B: bulk sample from primary tumor to deconvolve. C1: known cell types found in single-cell metastatic samples. C2: unknown cell types only in primary

tumor. C: horizontal stack of C1 and C2 to compose the total cell types in primary tumor. F: corresponding fractions of cell types. S: profile matrix inferred from single-cell metastatic

samples

Table 1. Variables and parameters

Bm�n Bulk samples (m gene �n samples) in primary tumor

C1
m�k Known cell types (m gene � k known cell types) in primary tumor

C2
m�y Possible unknown cell types (m gene � y unknown cell types) in primary tumor

FK�n Fraction of cell types (K cell types � n samples) in primary tumor

Cm�K Total cell types (m gene � K cell types) in primary tumor; note K ¼ kþ y

CS
m�k Expression profile (m gene � k cell types) in metastatic tumor prior to zero-inflation corrections

Sm�k Representative reference (m gene � k cell types) from single-cell data in metastases

l Scaling factor for S

k Penalty term to balance information from S

i388 H.Lei et al.



() min
ðC1Þi�

jjBi� � ðC1Þi�F1jj22 þ kjjðC1Þi� � lSi�jj22;

ð8i ¼ 1; . . . ;m;we then omit subscript i for clarityÞ
(23)

() min
c1
>
jjb> � c1

>F1jj22 þ kjjc1
> � ls>jj22; (24)

() min
c1

1

2
c1
>ðF1F>1 þ kIÞc1 � ðF1bþ klsÞ>c1 (25)

with the same constraint as shown in Equation (17), where I is an iden-
tity matrix, which implies I> ¼ I. Let Q ¼ F1F>1 þ kI. We can show
that Q> ¼ ðF1F>1 þ kIÞ> ¼ ðF1F>1 Þ

> þ kI> ¼ F1F>1 þ kI ¼ Q, so Q is
a symmetric matrix, which indicates that Equation (25) is a QP problem.

Phase 2.2: Optimizing C2 . Let c2 ¼ C2
>
i� , which represents the

expression profile of one gene in each cell type/population. Similarly,
we define b ¼ B>i� to represent the transpose of one row of B. Then we
can re-formulate Equation (16) to a standard form for C2:

min
C2

jjB� ½C1;C2�Fjj2Fr þ kjjC1 � lSjj2Fr; (26)

() min
C2

jjB� C1F1 � C2F2jj2Fr þ kjjC1 � lSjj2Fr;

ð let B ¼ B� C1F1 for convenience Þ
(27)

() min
C2

jjB�C2F2jj2Fr; (28)

() min
C2

Xm
i¼1

jjBi� � ðC2Þi�F2jj22

" #
; (29)

() min
ðC2Þi�

jjBi� � ðC2Þi�F2jj22;

ð8i ¼ 1; . . . ;m;we then omit subscript i for clarityÞ
(30)

() min
c2
>
jjb> � c2

>F2jj22; (31)

() min
c2

1

2
c2
>F2F>2 c2 � ðF2bÞ>c2 (32)

We found that Equation (32) has similar form to Equation (13).
It is also not hard to see that ðF2F>2 Þ

> ¼ F2F>2 , so the term F2F>2 is
symmetric, which also indicates that Equation (32) is a Quadratic
Programming problem with the same constraints as Equation (18).

Phase 3: Optimizing scaling factor l. At this phase, we fix F and
C1 to optimize l. Then Equation (1) equals to:

min
l

jjC1 � lSjj2Fr; (33)

Since l is a scalar and C1 and S are two known matrices with the
same dimension of m� l, then Equation (33) can be viewed as a
Linear Regression problem of which the goal is to best fit the model
regarding the independent variable S to the data C1 by using the
least-squares method to find the optimal value of l that minimizes
the residual sum of squares:

min
l

RSSðlÞ ¼
Xm

i

ðC1 i� � lSi�Þ2 ¼
Xm
i¼1

Xk

l¼1

ðC1 il � lSilÞ2: (34)

In summary, we have shown that the deconvolution problem can
be divided into three main phases. In each phase, we have formulated
the sub-problem to be either a QP problem or a Linear Regression
problem. With third-party software (e.g. CVXOPT), we iteratively
solve each phase by using the coordinate descent algorithm until the
convergence to get optimal values for F;C1; C2 and l.

2.3 Datasets
2.3.1 Simulated datasets

It is not possible to establish with certainty the ground truth for any
real deconvolution dataset and so we rely partially on simulated
data for validation. Our main strategy is to rely on true single-cell
RNA-seq data from paired primary and metastatic breast cancer
samples to generate artificial bulk data composed of mixtures of sin-
gle cells, for which we would then have a known ground truth. We
simulated bulk RNA-seq of primary tumor tissue samples based on
the following assumptions: (i) the underlying gene expression profile
of each cell type in bulk RNA-seq would be similar to the average
expression values of cells belonging to the same type in single-cell
RNA-seq had dropout events in single-cell RNA-seq not occurred;
and (ii) the fractions of different cell types in metastatic tissue sam-
ples will be different from those in primary tumor tissue samples.

First, we inferred the cell type expression matrix of bulk RNA-
seq from the real single-cell RNA-seq data of metastatic tumor tissue
samples. The single-cell RNA-seq results from two distinct metasta-
ses of the tumor, BoM1 and BoM2, were normalized to CPM
(counts per million) before being aggregated. For each cell type, the
aggregated cell expression values were averaged to obtain its gene
expression profile. The gene expression profile was normalized to
CPM again before being corrected for the effect of single-cell RNA-
seq drop-out events (see Section 2.3.3).

The corrected gene expression profile then served as the ground
truth cell type expression matrix for simulating the bulk RNA-seq
samples. In total, 5000 randomly selected genes and all k cell types
from the gene expression profile were log 2 transformed and repli-
cated n times to generate each of the n primary tumor tissue sam-
ple’s component matrix. Inter-sample noise was added to the
component matrices by replacing each of jth gene’s expression value
x with one instance drawn from the Gaussian distribution
Nðx; rj=5Þ, where rj is the standard deviation of jth gene’s expres-
sion values across cell types in the log 2 space. The noisy component
matrices were then projected back to the linear space. The fraction
vector of the k cell types in these primary tumor samples was gener-
ated by perturbing the frequency of each cell type in the real single-
cell RNA-seq of metastatic tissue samples in log 2 scale: each of the
k frequencies fi was replaced by one instance drawn from the
Gaussian distribution Nðfi; rf =2Þ, with rf being the standard devi-
ation among the k cell types’ frequencies. This fraction vector was
then replicated n times before the addition of inter-sample noise in
the same way as the cell type-gene expression component matrix.
The fractions for all k cell types were then summed to normalize the
matrix, resulting in a n�k fraction matrix where each of the n frac-
tion vector sums to 1.

Finally, the n simulated bulk RNA-seq of primary tumor tissue
samples were generated by convolving each component matrix with
its corresponding fraction vector.

2.3.2 Bulk and single-cell RNA-seq datasets

We tested the method on a real dataset consisting of bulk RNA-seq
derived from a formalin-fixed parafin embedded primary breast
tumor sample and single-cell RNA-seq data derived from two bone
metastases. Statistics on the dataset used in the present work can be
found in Table 2.

2.3.3 Preprocessing to construct S

The single-cell RNA-seq experiment produces an ns �m expression
matrix for m genes and ns cells sequenced in total. Using known bio-
markers for different cell types, each of the ns cells could be anno-
tated with one of the k cell types identifiable. After normalizing the
expression values into CPM, the k�m matrix Cs can be calculated
by averaging expression values for each of the m genes across cells
with the same cell type label.

However, single-cell RNA-seq data includes noise and bias from
dropout events, where a gene moderately expressed in some cells
failed to be detected in other cells. These drop-outs were hypothe-
sized to be the result of failed reverse transcription during the
sequencing experiment, as suggested in previous attempts at
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quantifying mRNA at single-cell level using RT-qPCR (Bengtsson
et al., 2008). These dropout events require additional correction to
guide the deconvolution of dropout-free bulk RNA-seq meaningful-
ly. In general, the smaller an expression value is, the higher its prob-
ability of being undetected in the experiment will be.

To correct for the effect of dropout events, we assume that the
relationship between the jth gene’s average expression value lj and
its dropout frequency follows a Michaelis–Menten function
(Andrews and Hemberg, 2019):

P
j
dropout ¼ 1� lj

K
j
M þ lj

; (35)

where K
j
M is the Michaelis constant representing the mean expres-

sion value of jth gene required for half of the cells to be detected.
Therefore, we could fit the Michaelis–Menten function with mean
expression values and percentages of values dropped from the real
single-cell RNA-seq data to estimate the KM for each gene. Then
given any average expression value for the cell type, it would be pos-
sible to estimate Pdropout using the Michaelis–Menten function. The
profile expression vector for the jth gene measured in a bulk RNA-
seq experiment Sj 2 R

1�k
�0 can then be inferred as: Sj ¼ Cs

j

1�P
j

dropout

.

2.4 Evaluation
We evaluated the performance of our method by comparing the
inferred expression profiles Ĉ and corresponding fractions F̂ with
the ground truth C and F by utilizing four different metrics: R2

C

(Pearson coefficient of Ĉ and C), L1 loss (jjĈ � Cjj1=jjCjj1), R2
F

(Pearson coefficient of F̂ and F) and MSE (mean square error of F̂
and F). Except where otherwise noted, we used k ¼ 0:1, chosen em-
pirically to give good results across a variety of datasets.

3 Results

3.1 Our deconvolution is unbiased and robust on

simulated data
First, we tested our method on the simulated data generated as dis-
cussed in Section 2.3.1. We generated a single-cell matrix C with
size of m¼5000 random genes and k¼5 known cell types as well
as a profile matrix S from the current Single-cell RNA (scRNA)
dataset. We also allow y¼1 unknown cell type that only exists in
the bulk sample. Noise has been introduced to bulk and single-cell
samples to mimic the relatively low resolution in bulk sequencing
and individual-level differences in single-cell RNA-seq data,
respectively.

When the number of samples increases, the average performance
of pure RAD becomes slightly better while the variance is still large.
We also find that in most cases, adding a profile matrix S further
improves the inference by reducing the L1 loss (Fig. 2a). In the cur-
rent experiment, we used S as the initialization for both RAD and
RADs. This is equivalent to feeding prior information to RAD,
which is usually not the case for RAD since it assumes that no
single-cell information available. Adding such priors could yield
faster and better convergence in some cases.

The inference of F shows a similar pattern to that for C, although
they are not sensitive to small number of samples (Fig. 2b). This is
not surprising since F has more constraints and the search space of
both is much smaller than C. Noise was also introduced (b noise

and s noise are not 0), and we then find that cell component decon-
volution with S outperforms pure RAD and that of cell component
deconvolution without S in all cases as well, and it is robust to the

noise (Fig. 2). Based on the results, we can conclude that adding in-
formation from C (e.g. using profile matrix S) can help in bulk

sequencing data deconvolution particularly with small numbers of
bulk samples.

3.2 Comparison with other methods
In this section, we compared our method to two other popular de-
convolution methods: DSA, a complete deconvolution method

requiring a list of highly expressed genes corresponding to each cell
type; and CIBERSORTx, a semi-deconvolution method with refer-
ence gene expression profiles from other tissues. There are some

restrictions for these methods, e.g. DSA cannot work when there is
only one bulk sample to deconvolve and CIBERSORTx requires the
number of bulk samples to exceed the number of cell types. In

Table 2. Matched bulk RNA-seq datasets used in this study

Dataset PBT BoM1 BoM2

Data type Breast primary Bone metastases at left acetabulum Bone metastases at right tibia

No. of genes 57 557 18 386 18 386

No. of samples 1 4649 5505

No. of coarse cell types — 6 6

No. of fine cell types — 26 24

Fig. 2. Performance of deconvolution when bulk samples are limited. We show rep-

resentative results of RAD, RADs without reference, RADs with reference for num-

ber of bulk samples n¼ 1 while number of cell type K¼6 (five known cell types and

one unknown cell type). We compared the performance both on estimated C and F

using the evaluation metrics L1 loss, R2
C for C and MSE, R2

F for F, respectively. (a)

RAD using S as initialization, (b) RADs without S (k¼0) and (c) RADs with S

(k ¼ 0:1)

i390 H.Lei et al.



addition, neither of these two methods is able to infer information
regarding unknown cell types absent in the reference gene list or ex-
pression profiles.

In order to make the comparison reasonable, we ran two sets
of experiments. In the first experiment, we ran DSA on a small num-
ber of bulk samples (e.g. n¼2, 4). Note that DSA can only infer the
cell types that are present in S so the L1 loss and MSE were only cal-
culated on the known cell types, although our method includes both
known and unknown cell types. We find DSA to have similar per-
formance to RAD and RADs without reference, which is worse than
that of RADs with reference in cases with or without noise (Fig. 3,
red boxes).

In the second experiment, we increased the number of simulated
bulk samples to be 7, but varied the number of known and unknown
cell types to be 5:1, 4:2 and 3:3, respectively. This setting is intended
to align with requirement of CIBERSORTx and also allow us to in-
vestigate the effects of known information on the deconvolution per-
formance. We find that DSA and CIBERSORTx perform worse than
our method (Fig. 4d, different boxes). This might be due to the fact
that DSA and CIBERSORTx can only infer the cell types in S and

any unknown cell types then are included in the bulk sample profiles
as noise rather than independent components in the deconvolution
result, while our method considered both known and unknown cell
types in the bulk samples and separated them in the deconvolution
result. We also find that when there are more unknown cell types,
our method still works but the performance became worse (Fig. 4d),
different X labels). This is not surprising since more unknown cell
types means less useful information in S, which makes the penalty
term in Equation (1) less effective. We further note that the problem
is ill-posed if the number of unknown cell types exceeds the number
of bulk samples. This also indicates the importance of correct refer-
ence information in the bulk deconvolution.

3.3 Systematic changes in the breast cancer metastatic

microenvironment
In this section, we applied our deconvolution method to the real
data described in Section 2.3.2. We first retrieved genes that were

Fig. 3. Average performance of deconvolution in various noise (replicates¼10).

Average results of RAD, RADs without reference, RADs with reference for number

of bulk samples n¼1, 2, 4 and number of cell types K¼ 6 (five known cell types

and one unknown cell type) with different levels of noise (b_noise¼0.0, 0.1,

s_noise¼ 0.0, 0.1). Performance was calculated across 10 replicates, using L1 loss

and MSE for C and F, respectively. (a) Performance on C inference, (b) Performance

on F inference. Different boxes show RAD with S as initialization, RADs without S,

RADs with S and DSA, respectively (see Section3.2 for details; note that DSA can-

not work when bulk sample n¼1)

Fig. 4. Performance compared with DSA and CIBERSORTx (replicates¼ 10).

Deconvolution on seven simulated bulk samples without noise using six cell types.

Unknown cell type(s) were set to be 1, 2 and 3, respectively. (a–c) representative re-

sult for DSA, CIBERSORTx and RADs when there are three unknown cell types.

(d) Average performance on F (left) and S (right) inference from the three methods.

Metrics of DSA and CIBERSORTx were calculated only on the known cell types in

the inferred results and ground truth while sRAD considered both known and un-

known cell types
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differentially expressed across different cell types in the single-cell
RNA-seq data. For each gene, its log 2-scaled expression values in
all cells annotated to be one cell type was compared with those in all
other cells. A Wilcoxon rank-sum test was performed during the
comparison to determine if the gene was significantly differentially
expressed in the foreground cell type compared with the back-
ground. A Benjamini–Hochberg corrected P-value cutoff of 0.001
yielded a total of 1226 genes differentially expressed across all six
cell types annotated in the single-cell RNA-seq. Then, we checked
with the bulk sample to make sure that the same set of genes is avail-
able for both bulk- and single-cell samples, which finally yielded
1196 genes. The expression profiles of the 1196 genes from the bulk
sample were then retrieved to compose B, and those from single-cell
samples were retrieved to compose CS. The profile matrix S was
inferred from CS as described in Section 2.3.3. B and S are the input
for Equation (1). We also allow for one cell type (C2) to represent
the cell type only found in primary tumor as well to balance the dif-
ference between bulk and single-cell sequencing data.

The inferred gene expression profiles from bulk samples were
found to match very well with the profile matrix S from single-cell
samples. This indicates that the penalty term in Equation (1) works
with a non-zero regularization term (Fig. 5a, k ¼ 0:1) in real data.
The heat-map showing the gene expression also yields distinct ex-
pression patterns for different cell types (Fig. 5b). However, frac-
tions of cell types exhibit different patterns between primary site
and metastatic sites. For example, the fibroblasts cell type takes a
low proportion in the primary site, but makes up for a large one in
the metastatic sites. Although the only bulk sample available might
have an unrepresentative low fibroblast content at the specific loca-
tion where the tissue was sampled (e.g. high fibroblasts may be
needed for the tumor to attach to the bone), the large proportion of
fibroblasts in the bone metastases is consistent with previous studies
claiming that cancer-associated fibroblasts contribute to tumor
growth, invasion and metastasis (Joshi et al., 2021; Kalluri and
Zeisberg, 2006), which leads to cancer malignancy in later stages.
The fraction of lymphocytes also exhibits an interesting pattern. The
primary sample shows a higher fraction than the average fraction in
bone metastatic samples (Fig. 5, rightmost versus leftmost bar) al-
though BoM1 includes more lymphocytes than the primary sample,
whereas BoM2 includes fewer. However, the average of BoM1 and
BoM2 shows a lower fraction than the primary sample (Fig. 5, left-
most bar). We also find that there are almost no myeloid cells in the

primary tumor (fraction ¼ 1:3� 10�4) but some in bone metastases.
A closer examination found that among the single-cell samples
labeled as myeloid cell, macrophages occupy a large proportion
(77.4%, from a finer cell-type annotation on the same dataset, data
not shown). All these findings are consistent with prior work, which
concluded that metastatic breast cancers show reduced immune cells
but increased macrophages compared with primary tumors (Zhu
et al., 2019). We also found epithelial cells relatively preserved in
both primary and metastatic tumors. This is consistent with breast
cancer origin from non-diseased epithelial tissue and transition to
metastasis (Nguyen et al., 2018; Wang and Zhou, 2011). The frac-
tions of osteoclasts can be used as negative controls since they are
bone-tissue related cell types that should be rare in primary sites,
and indeed they exhibit fractions close to zero in the primary tumor.
The unknown cell types, meaning inferred cell types not found in
the single-cell data, account for over 30% in the primary tumor.
Although this unknown type is close to endothelial (Fig. 5c) based
on the expression distance, we would not assign any biological
meaning to it until we have better evidence (e.g. comparing to
single-cell data from the same primary tumor or other reliable public
data). We interpret it as a free component that accounts for the dif-
ference between primary and metastatic tumor composition.

We then explored the inferences from the perspective of varia-
tions in inferred single-cell gene expression and their interpretation
with respect to Gene Ontology (GO) enrichment pathways. We first
show that S extracted from real data is a good representative of the
true single-cell data. It has low average distance to the expression
profiles of each of the single-cell samples and shows high correlation
with such gene expression profiles (Fig. 6a and b). Although S repre-
sents the available single-cell samples well while still allowing us to
infer a reasonable C at the cell-type level, some variations in gene
expression were observed between inferred primary tumor C and
the single-cell RNA-seq data measured from each of the two bone
metastases. This may suggest changes in gene expression at the
single-cell level along the metastatic trajectory of the tumor. The top
1% most down-regulated and up-regulated genes in each metastatic
sample, measured by their distances from the inferred expression
values for the primary tumor sample, were selected for downstream
GO enrichment analysis (Fig. 6c). The top up-regulated genes in
both metastatic samples showed significant enrichment for the re-
ceptor binding of several chemokines that have been found to have a
direct impact on metastasis, including CCR5 and CCR1 (Mollica

Fig. 5. Gene expression in seven cell types and corresponding fractions in primary tumor and bone metastasis. (a) Comparison between inferred C and profile matrix S, (b)

gene expression profiles in inferred C, (c) fractions of different cell types in primary tumor and two bone metastasis (BoM1 and BoM2). AverM means the average fraction in

BoM1 and BoM2
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Poeta et al., 2019). This is consistent with previous reports that
increased in CCR5 activity leads to increased homing behavior to
metastatic sites in breast cancer (Jiao et al., 2021). Similarly, the
knock-down of CCR1 was experimentally shown to inhibit metasta-
sis of breast cancer (Shin et al., 2017). The up-regulation in both
metastatic samples could also have the effect of promoting
chemotaxis of natural killer cells that may be recruited in response
to increased activity of chemokines CCR1 and CCR5 (Aldinucci
et al., 2020). Additionally, increased expression of genes enriched
for binding of IgG, such as is observed with BoM2, has
been hypothesized to be a driver of breast tumor metastasis (Cui
et al., 2021).

4 Discussion

In this work, we develop a novel tumor deconvolution method,
RADs, designed for scenarios in which we have mixtures of bulk
and single-cell data. We show that the method improves on standard
bulk deconvolution or reference-based variants and works well even
when there are limited numbers of bulk samples. Although our for-
mulation of deconvolution using single-cell data from the same pa-
tient alleviates some bias induced by independent single-cell
reference profiles, the formulation still implicitly requires all poten-
tial populations be available in the single-cell data. The extension of
C to unknown populations not available in single-cell data can elim-
inate another source of inaccuracy in reference-based deconvolution.
This heuristic idea not only has a biological meaning, such that
some cell types in the primary tumor might not migrate to other
organs or tissues, but also lends itself well to the coordinate descent
algorithm. Unlike other methods, our method directly takes advan-
tage of single-cell data from metastatic sites of the same patient, pro-
viding a more accurate reference than those from unrelated normal
tissue or a panel of reference samples. In addition, our method can
work on a very limited number of bulk samples and still achieve rea-
sonable results when the number of inferred cell types exceeds the
number of bulk samples, normally a hard problem for complete
deconvolution. The results on the real data align well with
existing work on the breast cancer bone metastases as described in
Section 3.3.

There are some limitations of our method, however. The method
is still limited in its ability to infer new cell types with few bulk sam-
ples, making it difficult to characterize progression via novel evolu-
tion or complete loss of clones. It would benefit from further
evaluation on this point and on its ability to discriminate similar cell
types with finer resolution. It additionally depends on some model
parameters for which we so far lack principled methods for
automated selection. Also, our method requires matched bulk and
single-cell samples from the same patient, even if they can come
from different sites and progression stages. Although this is moti-
vated by an important use case, the combination of data is still not
common. Future work will explore how same-patient and third-
party reference data may be synergistic in bypassing this limitation.
Nevertheless, we believe our method builds a bridge between limited

data and good deconvolution performance, and provides strategies

for better leveraging heterogeneous data modalities that may have
broader applications in cancer research and other single-cell

biology.
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