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Abstract

Motivation: Computational reconstruction of clonal evolution in cancers has become a crucial tool for understand-
ing how tumors initiate and progress and how this process varies across patients. The field still struggles, however,
with special challenges of applying phylogenetic methods to cancers, such as the prevalence and importance of
copy number alteration (CNA) and structural variation events in tumor evolution, which are difficult to profile accur-
ately by prevailing sequencing methods in such a way that subsequent reconstruction by phylogenetic inference
algorithms is accurate.

Results: In this work, we develop computational methods to combine sequencing with multiplex interphase fluores-
cence in situ hybridization to exploit the complementary advantages of each technology in inferring accurate models
of clonal CNA evolution accounting for both focal changes and aneuploidy at whole-genome scales. By integrating
such information in an integer linear programming framework, we demonstrate on simulated data that incorpor-
ation of FISH data substantially improves accurate inference of focal CNA and ploidy changes in clonal evolution
from deconvolving bulk sequence data. Analysis of real glioblastoma data for which FISH, bulk sequence and single
cell sequence are all available confirms the power of FISH to enhance accurate reconstruction of clonal copy number
evolution in conjunction with bulk and optionally single-cell sequence data.

Availability and implementation: Source code is available on Github at https://github.com/CMUSchwartzLab/FISH_
deconvolution.

Contact: russells@andrew.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer progression has long been understood to be driven by clo-
nal evolution (Nowell, 1976), but our understanding of the mecha-
nisms and implications of that observation are currently
undergoing a dramatic revision. This growing insight has been
driven largely by two key innovations: the advance of high-

throughput sequencing methods to characterize tumor genomics
with ever-finer precision and accuracy (Mardis and Wilson, 2009)
and the concurrent advance of computational methods to interpret
those sequencing data to construct coherent accounts of how indi-
vidual cancers or the space of all cancers collectively develop
(Beerenwinkel et al., 2016). A crucial component of those latter
advances has been the progress of tumor phylogenetics (Schwartz
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and Schäffer, 2017), i.e. constructing models of evolution in can-
cers from tumor genomic data.

Methods for clonal phylogenetics have attracted great interest in
computational biology, concurrent with greater understanding of
the complexity of tumor evolution mechanisms and the algorithmic
challenges of reconstructing tumor phylogenies from available gen-
omic data. A particular area of recent interest in this regard has been
development of better methods for resolving evolution by copy num-
ber alterations (CNAs) and the structural variations (SVs) that may
produce them. While the importance of CNAs and SVs in cancer has
long been known (Zack et al., 2013) and some of the first methods
for clonal lineage reconstruction focused on CNA-driven evolution
(Pennington et al., 2007), much of the tumor phylogeny field has
focused historically on single nucleotide variants (SNVs), with
CNAs omitted (e.g. Yuan et al., 2015) or treated largely as a con-
founding factor for inferring SNV-driven evolution (e.g. El-Kebir
et al., 2016a,b). Relatively few computational methods have been
created to date for the purpose of inferring tumor evolution by
CNAs, either singly (El-Kebir et al., 2016a,b, 2017; Schwarz et al.,
2014; Tolliver et al., 2010) or jointly with SNVs (Jiang et al., 2016),
and it is only recently that methods have begun to appear for captur-
ing evolution by SVs more broadly (Eaton et al., 2018). Yet the bio-
logical evidence over the same time has strongly indicated that
CNAs, and the SVs that may produce them, outperform SNVs and
other focal changes in predicting treatment response (Shukla et al.,
2020) and are likely the dominant mechanism by which tumors de-
velop and functionally adapt to escape controls on cell growth
(Zack et al., 2013).

CNA-driven evolution creates complications relative to SNV-
driven evolution. In part, modeling CNAs is a challenge because it is
less commonly studied in phylogenetics in general. Furthermore,
CNAs create particular complications because they can occur recur-
rently in the same patient and on multiple scales with sometimes
overlapping variations that can be difficult to resolve. CNAs are
also particularly challenging for deconvolutional approaches to phy-
logenetics (Beerenwinkel et al., 2005), which computationally separ-
ate mixtures of clones from bulk sequence data and whose solutions
are underdetermined without additional data or problem con-
straints. Using bulk data remains necessary because it is much more
abundant than single-cell data. CNA methods have particular diffi-
culty dealing with ploidy changes, particularly via whole-genome
duplication (WGD), because ploidy is difficult to infer accurately
from sequence data alone. While recent methods have shown it to
be possible to perform accurate CNA construction using multi-
region bulk sequencing (Zaccaria and Raphael, 2020) or single-cell
sequencing (Zaccaria and Raphael, 2021), these methods require
limiting assumptions, e.g. that WGD can occur only once in a
tumor’s history. Furthermore, large cohorts with multi-region bulk
or single-cell sequencing are still lacking and it remains an open
question how best to perform large-scale tumor genomic studies that
will be informative for clonal CNA evolution.

The problem of accurately reconstructing ploidy changes in
tumor evolution is concerning, partly because WGD is now recog-
nized as a statistical marker of aggressive cancers (Bielski et al.,
2018; Koçak et al., 2020; Oltmann et al., 2018) but without a clear
biological mechanism. Earlier models of WGD in tumor evolution,
which proposed a single early WGD event as a prerequisite for
tumorigenesis in chromosomally instable cancers (Dewhurst et al.,
2014), are now known to be simplistic, as WGD is not necessary,
but could occur multiple times in the same subclone or as separate
events in different subclones during a cancer’s evolution (Oltmann
et al., 2018). Rather, WGD can be seen to be one of many mutation
types active to different degrees in different cancers, shaping the
patient-specific risk of diverse progression processes (The ICGC/T
CGAPan-Cancer Analysis of Whole Genomes Consortium, 2020).

The present work develops methods to improve resolution of
CNA-driven evolution in cancers via a strategy of multi-omic data
integration. Single-cell sequencing (Navin et al., 2011) has revolu-
tionized tumor evolution studies and many methods are now avail-
able for deriving CNA-based tumor phylogenies from single-cell
DNA sequence data, despite some continuing challenges of

gathering and interpreting such data (Mallory et al., 2020; Zafar
et al., 2018). Malikic et al. demonstrated that integrating bulk and
single-cell sequencing data (Malikic et al., 2019) for improving SNV
evolution models, a strategy we previously demonstrated successful
for CNA-driven evolution as well (Lei et al., 2019). Here, we ex-
plore the potential of an additional form of data, multiplex inter-
phase fluorescence in situ hybridization (miFISH), which can profile
tumor evolution in single cells at small numbers of probes
(Heselmeyer-Haddad et al., 2012) without normalization artifacts
that make ploidy a challenge for purely sequence-based studies.
While miFISH limits one to just a few copy number markers per cell,
its easy scalability to large numbers of cells has made it a powerful
tool for CNV tumor phylogenetics in its own right, especially when
FISH probes are placed strategically at loci recurrently amplified in
the tumor type of interest (Chowdhury et al., 2013; Pennington
et al., 2007; Zhou et al., 2016). While individual miFISH probes in
recurrently amplified regions may not give a reliable signal for
WGD, prior work has shown that collective changes among just a
few well-spaced miFISH probes provide sufficient signal to reliably
distinguish focal CNAs from ploidy changes (Chowdhury et al.,
2014, 2015; Gertz et al., 2016; Oltmann et al., 2018).

Here, we develop a new method for integrating bulk sequence
with single-cell sequence (SCS) and/or miFISH in order to combine
advantages of each technology for improved reconstruction of copy
number evolution at the single cell level. We show with semi-
simulated data that these two kinds of data each contribute in dis-
tinct and synergistic ways to more accurate inference of CNA-driven
evolution, especially in aneuploid tumors, and demonstrate their
practical value on a study of glioblastoma profiled by bulk, SCS and
miFISH. The results support a model of WGD as an ongoing process
of somatic evolution rather than a one-time event, potentially help-
ing to explain why evidence of WGD is a risk factor for continuing
tumor progression. Together, the work demonstrates the value of
bringing miFISH or related methods for cytometric analysis into
sequence-based tumor phylogeny studies if we are to accurately re-
construct mechanisms of CNA-driven evolution in cancers.

2 Materials and methods

2.1 Problem statement
While the mixed membership model in our previous work (Lei et al.,
2019) is still suitable to describe our problem, the previous objective
function is too simple for our new problem, since it does not include
miFISH data. The miFISH data is relevant only at a few loci, but
with an appropriate objective function, it allows us to estimate the
genome-wide ploidy and thereby to inform the analysis of unnor-
malized (i.e. true) copy number at all loci. We therefore designed a
new objective function for the problem intended to capture informa-
tion from bulk copy numbers, miFISH copy numbers, single cell
sequencing (SCS) data and phylogenetic constraints:

minC;F;S;PðjjB�CPFjj1 þ af � jjF � F0jj1
þap � JðS;C;C0Þ þ ac � jjXTCP �H 0jj1Þ

(1)

where the desired outputs are a matrix of inferred normalized copy
numbers C of probes across the genome, a diagonal matrix P with
the inferred ploidy divided by 2 for each in the diagonal, and an
inferred clonal frequency matrix F. CP, then transforms the normal-
ized cells with mean copy number two into unnormalized cells with
putative absolute copy numbers. We refer to the outputs collectively
as the inferred data.

We collectively call the algorithm’s inputs the observed data,
which we distinguish from the ground truth, the hypothetical com-
plete and noise-free data that are only knowable for simulated
inputs. The potential inputs are F0, a matrix of observed mixture
fraction information derived from miFISH data by preclustering it
to estimate clonal frequencies; C0, an optional matrix of normalized
copy numbers of observed SCS data that establish a reference set of
single-cell clones; H 0, the observed copy numbers from miFISH data
for the genomic regions covered by miFISH probes; and X, a 0-1
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matrix in which the 1’s identify segments of the genome covered by
each miFISH probe. ‘Covered’ means loosely that the segment
includes or is close enough to the probe so that the correct unnor-
malized copy number in the segment is measured accurately by the
miFISH probe, perhaps with a small amount of noise. S is a phyl-
ogeny inferred in the process of computing the objective function.
jjB� CPFjj1 is the deviation between observed and inferred mixed
copy number in the bulk tumor. jjF � F0jj1 describes the deviation
between inferred mixture fraction F and observed mixture fraction
F0; JðS;C;C0Þ is the cost of the phylogeny that is built on inferred
cell clones C and observed single-cell clones C0 from a presumed
non-cancerous diploid root; the definition of the tree and the cost-
function can be found in Supplementary Section S1.3. We require C
to be integral because homogeneous copy number is inherent to
being a clone, but C0 need not be integral. X is a sparse matrix such
that X ij ¼ 1 if i is the index miFISH probe in the genomic position of
single-cell data and i ¼ Index½j�, where each element in Index is the
index of one miFISH probe on the genomic axis of the SCS data.
The product XTC represents a subset of genomic position that con-
tains only the copy number information for segments covered by
miFISH probes and zeros elsewhere. Then jjXTCP �H 0jj1 describes
the deviation between inferred and observed copy number at loci
where FISH probes are located.

Table 1 defines the three regularization parameters af , ap and ac,
which we call ‘mixture fraction weight’, ‘phylogenetic weight’ and
‘copy number weight’ respectively. A full list of model variables is
provided in Supplementary Table S1. We elaborate in the
Supplementary Methods on specific constraints involving the terms
of the objective function. All these terms are included in an integer
linear programming (ILP) problem formulation that we solve
through an iterative update algorithm making use of the Gurobi ILP
solver.

Due to the complexity of the ILP, we sought a locally optimal so-
lution to the constraints via a heuristic iterative coordinate descent
optimization. The method iteratively solves for F, S, C and P in
order, repeating these steps until the solution converges or a max-
imum number of iterations are reached. The ILP and associated opti-
mization algorithm are described in Supplementary Methods
Section S1.

2.2 Glioblastoma data
We apply the method to SCS and copy number data from two glio-
blastoma (GBM) patients (GBM07, GBM33), which were previous-
ly described in (Lei et al., 2019). We have samples from three tumor
regions per patient and FISH data from cells in each region for eight
gene locus probes: PDGFRA(4q), APC(5q), EGFR(7p), MET(7q),
MYC(8q), CCND1(11q), CHEK1(11q) and ERG (21q), several of
which were selected because they are sites of recurrent amplifica-
tions in GBM (The Cancer Genome Atlas Research Network,
2008). Indeed, both patients have copy numbers over 10 at several
loci and patient GBM07 has an extreme amplification with copy
numbers possibly over 50, at PDGFRA. We set an upper bound of
10 for normalized copy number, which was used directly for the
SCS data. For miFISH data, which are not inherently normalized,
we set an upper bound of 40, which allows for as many as 2 WGD
on top of a normalized copy number of 10. Copy numbers greater
than their respective uppper bound were set to their upper bound.
The methods for designing FISH probes and counting FISH copy
numbers have been previously described (Heselmeyer-Haddad et al.,
2012, 2014; Oltmann et al., 2018).

2.3 Simulated data
We further rely on simulated data for validation due to the unavail-
ability of real data with known ground truth. As in our prior work
(Lei et al., 2019), we meet this need through semi-simulated data
derived from observed GBM single-cell sequence data for which we
artificially generate clonal mixtures of known composition and use
these to generate synthetic bulk data and, in an extension of the
prior work, synthetic miFISH data. We thus generate synthetic data
for which true cell fractions and copy numbers are known, but with
the goal of approximating as well as possible characteristics of the
true GBM data described in Section 2.2. For this purpose, we gener-
ate six data structures per synthetic dataset:

1. ~C: a matrix of normalized copy number profiles of all selected

clones, used to compose bulk tumor data

2. Ĉ: a matrix of normalized copy number profiles of major clones

in ~C, used to evaluate the performance

3. ~P : a diagonal matrix of half ploidies of all selected clones

4. P̂ : a diagonal matrix of half ploidies of major clones

5. ~F : a matrix of mixture fractions of all selected clones in each

region

6. F̂ : a matrix of mixture fractions of major clones in each region

In the simulated data, we set the normalized maximum copy
number to 10 as this is typically sufficient at most loci, except when
there is an oncogenic amplification. Full details on the simulation
protocol are provided in Supplementary Section S1.8.

3 Results

3.1 Evaluation on simulated data
3.1.1 No ploidy change

We first evaluated the method on simulated data with no ploidy
changes, i.e. all diploid data, to provide a basis for comparison with
pure deconvolution and with our previous work (Lei et al., 2019),
which did not explicitly model ploidy. Each test made use of bulk
data and the jjB�CPFjj deconvolution objective, but we varied
tests by whether or not we used each of the other objective terms—
jjF � F0jj; JðS;C;C0Þ and jjXTCP �H 0jj—to determine how they
contribute individually or in combination to overall accuracy. As
shown in Figure 1a, solving the pure deconvolution problem alone
yielded poor average accuracy (Fig. 1a, [i], red bar), although the
results improved substantially when we used true SCS data to initial-
ize the method (Supplementary Fig. S7). This observation is consist-
ent with our prior work (Lei et al., 2019), although the absolute
accuracy of these two variants is worse than in our previous work.
The difference is due to a change in initialization conditions as
explained in Supplementary Section S2.4 and Supplementary Figures
S6 and S7.

Including the term JðS;C;C0Þ had a large positive effect on the
copy number inference but little impact on the mixture fraction in-
ference (Fig. 1a, [iii], blue bar). However, adding jjF � F0jj to the ob-
jective function, and thus using miFISH to correct inferred clonal
mixture fractions, substantially improved the inference accuracy for
both mixture fractions and copy numbers (Fig.1a, [i] and [iii], green
bar). We further found that the combination of the two terms above
(mixture fraction weight af ¼ 0:2, phylogenetic weight ap ¼ 0:2,
copy number weight ac ¼ 0:0) further improved the performance in
both copy number inference and mixture fraction inference (Fig.1a,

Table 1. Regularization parameters in the objective function

af 2 R
þ Weight of correspondence between inferred and observed miFISH mixture fractions, referred to as ‘mixture fraction weight’

for short

ap 2 R
þ Weight of phylogenetic L1 model cost, referred to as ‘phylogenetic weight’ for short

ac 2 R
þ Weight of correspondence between inferred and observed miFISH copy numbers, referred to as ‘copy number weight’ for

short

Sequencing and FISH copy number deconvolution 3
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[i] and [iii], cyan bar), showing these two components act in a com-
plementary fashion.

The inclusion of jjXTCP �H 0jj alone (mixture fraction weight
af ¼ 0:0, phylogenetic weight ap ¼ 0:0, copy number weight
ac ¼ 0:2), with jjF � F0jj ðaf ¼ 0:2; ap ¼ 0:0; ac ¼ 0:2Þ, or with
JðS;C;C0Þ ðaf ¼ 0:0; ap ¼ 0:2; ac ¼ 0:2Þ yields further improvement
(Fig. 1a, [i] and [ii], violet, gray and orange bars) in copy number
and mixture fraction inference. Including both jjXTCP �H 0jj and
JðS;C;C0Þ ðaf ¼ 0:0; ap ¼ 0:2; ac ¼ 0:2Þ also substantially improved
mixture fraction inference (Fig. 1a, [iii], orange bar) compared to
JðS;C;C0Þ ðaf ¼ 0:0; ap ¼ 0:2; ac ¼ 0:0Þ. These results show that the
improvements from each objective component and from miFISH
and SCS data are cumulative. Furthermore, the model with all three
weights greater than 0 (af ¼ 0:2; ap ¼ 0:2; ac ¼ 0:2) yielded the best
results for mixture fraction inference and both normalized and
unnormalized copy number inference (Fig. 1a, [i]–[iii] and [v], coral
bars).

We then examined the robustness of the algorithm to noise. As
described in Section 2.3, we introduced 10% noise to the reference
data. The results were similar to those without noise and yielded
qualitatively similar conclusions. Although the model loses some ac-
curacy, it is fairly robust to moderate noise with the current parame-
ters (Fig. 1b).

3.1.2 With ploidy change

We next examined performance when samples can have variable
ploidies. We observed overall lower accuracy of inference across
tests when ploidy was variable, although a qualitatively similar pro-
file to the diploid case in Section 3.1.1 in how different combina-
tions of objective function terms contributed to accuracy. Pure
deconvolution without any single-cell information performed worse
when the ground truth data exhibit variable ploidy (Fig. 2a, [i], red
bar). Combining the JðS;C;C0Þ and jjXTCP �H 0jj terms, i.e.
ðaf ¼ 0:0; ap ¼ 0:2; ac ¼ 0:2Þ, yielded more improvement when

ploidy is variable (Fig. 2a, [i], blue and orange bars), though the
standard error increased. Furthermore, the model with all three
terms yielded the best accuracy to a significant degree by all meas-
ures considered (Fig. 2a coral bar), showing that each term contrib-
uted synergistically to overall accuracy when ploidy was variable.

When we introduced 10% noise to the data, the conclusions
were qualitatively similar (Fig. 2b). The complete model ðaf ¼
0:2; ap ¼ 0:2; ac ¼ 0:2Þ again performed the best by all evaluation
measurements.

3.1.3 Phylogenetic output

Finally, we compared the phylogenetic outputs of the current mod-
els. Since the phylogenetic results from the experiments with no
ploidy change were trivial (all the ploidies were around 2), we con-
sidered only the models with ploidy changes. We chose the case with
the highest overall accuracy of copy number as representative and
plotted the phylogenetic trees of three different models that intro-
duce the JðS;C;C0Þ term, JðS;C;C0Þ and jjXTCP �H 0jj terms, and
all three terms, respectively (Fig. 3). In each case, nodes 0–5 repre-
sent the inferred cell components, nodes 6–11 represent the refer-
ence cells we observed from the available SCS data, and node 12
represents the assumed diploid root. In each node, we use the nota-
tion NodeIdx; Ploidy to denote the index of a cell component (cell
subclone) and its corresponding ploidy. For example, 12; 2 repre-
sents the 12th cell component (root) and the ploidy of this cell com-
ponent is 2.

When we included only JðS;C;C0Þ ðaf ¼ 0:0; ap ¼ 0:2; ac ¼ 0:0Þ,
most of the inferred cell components yielded unrealistically large
copy numbers of 8.0, and the observed and inferred cell components
tended to cluster together (Fig. 3a). This may be due to a model ten-
dency to enlarge the ploidy of each inferred cell component to com-
pensate for the deviation between copy number vectors in observed
cell components.

Fig. 1. Average accuracy and RMSD of the deconvolution without ploidy change (n¼10). (a) Without noise. (b) With 10% noise. In each subplot of [i]–[v], the bar plot shows

the average error (1 - accuracy) of copy number, average RMSD of copy number, average RMSD of mixture fraction, average RMSD of ploidy and average RMSD of unnor-

malized copy number. Each bar with a different color represents a deconvolution model with different parameter values. The number in the first row under the bar indicates a

set of parameter values, the number in the second row under the bar indicates the mean for those parameter values, and the whiskers show the standard deviation. The legend

at the bottom right of (a) shows the combination of parameter values corresponding to each bar of each subplot, numbered in the same order as they appear in the subplot.

Each row of three numbers provides the value of mixture fraction weight af, phylogenetic weight ap and copy number weight ac, which are regularization terms for jjF �
F0 jj; JðS;C;C0Þ and jjXTCP �H 0 jj, respectively. 0.0 means the corresponding term was not included in the model. Statistically significant improvements from incorporating

FISH data were assessed by paired sample t-test, comparing green (2), pink (3) and gray (4) bars to the NULL model [red bar (1)] and orange (6), cyan (7), coral (8) bars to the

single-cell only model [blue bar (5)] (n.s.: not significant, *: 0:05 <P-value� 0:1, **: 0:01 <P-value� 0:05, ***: P-value� 0:01)
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When we added the jjXTCP �H 0jj term to update the model
ðaf ¼ 0:0; ap ¼ 0:2; ac ¼ 0:2Þ, the ploidy of inferred cell component
became more realistic, and the inferred and observed cell compo-
nents showed less obvious partitioning (Fig. 3b). We observed that
the diploid cell components tended to cluster together (e.g. node 2
! node 8) and tetraploid components tended to cluster together
(e.g. node 6! node 3). We inferred potential WGD events between
diploid and tetraploid cell components (e.g. node 5! node 6). This
again suggests that the ploidy information from FISH data helps to
correct for inferences difficult to make from sequence alone and
restores a meaningful phylogenetic structure with ploidy inference
among the cell components. Introducing jjF � F0jj and JðS;C;C0Þ to-
gether yielded a similar pattern (data not shown), suggesting as we
might expect that more accurate clonal frequencies can also correct
for the ambiguity in inference of F and C simultaneously that makes
the pure copy number deconvolution problem challenging. When
we used the complete model ðaf ¼ 0:2; ap ¼ 0:2; ac ¼ 0:2Þ, the
phylogenetic tree became more branched, and the diploid and tetra-
ploid cell components were perfectly divided into different branches
(node 0! node 7, root! node 10 and root! node 11). Also, the
potential WGD events were inferred to happen earlier in the pro-
gression (root ! node 10 and node 5 ! node 0). Furthermore, un-
like in the previous trees (e.g. node 10 ! node 2 in Fig. 3b), we see
no biologically implausible reversion of WGD events in which
ploidy is exactly halved. In addition, although most simulated ploi-
dies in the representative data are tetraploidy, the model is still able
to infer a triploidy case (node 9! node 3 in Fig. 3c). All these obser-
vations again confirmed that the complete model ðaf ¼ 0:2; ap ¼
0:2; ac ¼ 0:2Þ not only reconstructed the heterogeneity with best ac-
curacy and performance but also provided the most plausible phylo-
genetic structure for all the cell components.

Supplementary Sections S1.9, S2.7 and S2.1 further demonstrate
that FISH constraints improve phylogeny inference accuracy, using
fully simulated data with known ground truth trees and minimum

evolutionary distance as a proxy for correctness on semi-simulated
data. Supplementary Section S2.8 further compares our method to
MEDALT (Wang et al., 2021), a recently published method for
inferring phylogenetic trees from single-cell copy numbers alone,
suggesting that the addition of bulk data and FISH data yields large
improvements in the accuracy of phylogenetic trees under conditions
of limited single-cell data.

3.2 Real GBM data
Finally, we applied the complete model with predefined parameters
in which the mixture fraction weight, phylogenetic weight and copy
number weight are all set to 0.2 on the real glioblastoma cases
GBM07 and GBM33. The data include unnormalized copy numbers
of bulk sequencing, normalized copy numbers of single-cell sequenc-
ing, and unnormalized copy numbers of miFISH. As in our other
tests, normalized copy numbers from single-cell sequencing were
restricted to be at most 10. We put a corresponding restriction of 40
on unnormalized miFISH copy numbers, because very high copy
numbers are difficult to count accurately in miFISH and because it is
unrealistic to model amplification of copy numbers above 40 by
changes in chromosome number. We used k-median clustering of
SCS and miFISH data to choose k¼6 clusters as the reference cells
and reference FISH. The copy numbers of bulk samples, profiles of
copy number (SCS and FISH) of the cluster centers and profiles of
ploidy (FISH) of the cluster centers are the inputs to our the model.
We ran the method ten times per patient with different randomly
selected real reference data.

Figure 4 shows typical representative solutions for each case.
(For clarity, an expanded version of the figure is included in
Supplementary Fig. S9a–d), along with plots of the copy number
across the genomic axis for each inferred cell component
(Supplementary Fig. S9e and f). Since in the real SCS samples, we do
not have the true ploidy information, we use ‘?’ to label the ploidy

Fig. 2. Average accuracy and RMSD of the deconvolution with ploidy change (n¼10). (a) Without noise. (b) With 10% noise. In each subplot of [i]–[v], the bar plot shows

the average error (1 - accuracy) of copy number, average RMSD of copy number, average RMSD of mixture fraction, average RMSD of ploidy and average RMSD of unnor-

malized copy number. Each bar with a different color represents a deconvolution model with different parameter values. The number in the first row under the bar indicates a

set of parameter values, the number in the second row under the bar indicates the mean for those parameter values, and the whiskers show the standard deviation. The legend

at the bottom right of (a) shows the combination of parameter values corresponding to each bar of each subplot, numbered in the same order as they appear in the subplot.

Each row of three numbers provides the value of mixture fraction weight af, phylogenetic weight ap and copy number weight ac, which are regularization terms for jjF �
F0 jj; JðS;C;C0Þ and jjXTCP �H 0 jj, respectively. 0.0 means the corresponding term was not included in the model. Statistically significant improvements from incorporating

FISH data were assessed by paired sample t-test, comparing green (2), pink (3) and gray (4) bars to the NULL model [red bar (1)] and orange (6), cyan (7), coral (8) bars to the

single-cell only model [blue bar (5)] (n.s.: not significant, *: 0:05 <P-value� 0:1, **: 0:01 <P-value� 0:05, ***: P-value� 0:01)
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in observed cell components (Fig. 4b and d). We first focus on the
GBM07 case (Fig. 4a and b and Supplementary Fig. S9e). We
observed a pattern of focal CNAs consistent with those described
previously in (Lei et al., 2019). Previous work showed that glioblas-
tomas tend to display at least some chromosome-scale CNAs, such
as chromosome 7 gain, chromosome 9p loss and chromosome 10
loss (Abou-El-Ardat et al., 2017; Crespo et al., 2011; Davis et al.,
2016). The inferred cell components here all showed gain of
chromosome 7 and loss of chromosome arm 9p, suggesting these are
early events in the tumor’s evolution. One of the inferred compo-
nents also showed loss of chromosome 10 (Supplementary Fig. S9e).
In addition to the frequent focal aberrations, other chromosomes
also displayed evidence of whole-chromosome gains (e.g. chromo-
some 8, 9 and 19) and losses (e.g. chromosome 8, 11). There is,
however, some notable clonal heterogeneity, similar to inter-tumor
heterogeneity observed in systematic studies of GBM (Crespo et al.,
2011; McNulty et al., 2019).

Several studies have shown that WGD occurs in about 25% of
glioblamstoma cases (Bielski et al., 2018; Boisselier et al., 2018;
Carter et al., 2012) and have suggested that it is an early event when
it occurs. Our model for the GMB07 tumor supports an inference of
two distinct WGD events on distinct cell lineages: an early WGD in
the transition from components 12 through 7 to 0 and a late WGD
event in the transition from component 4 to 3. This inference that
there are multiple WGD events depends on having both sequence
data supporting the tree topology and FISH data supporting the spe-
cific ploidy changes and therefore supports the value of the miFISH
analysis in providing more direct measurements of ploidy and allow-
ing sampling of larger numbers of cells, and thus better detection of
rarer clones. Although we do not have information about the ploidy
for the observed cell components, we may infer them based on the
fact that the components with similar ploidy tend to occur in the
same branches on the tree (Fig. 3c). A manual maximum parsimony
imputation of WGD events suggests that all other observed compo-
nents are most likely diploid with the possible exception of compo-
nent 7, for which diploidy and tetraploidy are equally plausible.

Prior pan-cancer studies have suggested that WGD often touches
off a cascade of more localized CNA losses, with particular marked
chromosome losses (Zack et al., 2013) leading to a pseudotriploid

form observed in past miFISH study of WGD-prone tumors
(Oltmann et al., 2018). Conversion from tetraploidy to pseudotri-
ploidy is evident in the transition from component 0 to 1. Further,
focal CNA is evident in all of the inferred components but particu-
larly pronounced for the two tetraploid components 0 and 3 and the
pseudotriploid component 1 (Supplementary Fig. S9e).

The mixture fractions of the inferred clones provide additional
insight into likely GBM progression. Components 2 and 4 (pink and
blue bars in Fig. 4a) have relatively large proportions in two of the
three regions, suggesting that their common features might be close
to an ancestral population from which the tumor as a whole arose.
That is consistent with the finding that chromosome 7 gain and
chromosome 9p loss found in this component are early CNA events
in the tumor and perhaps key drivers of tumorigenesis. Noticeable
proportions of the non-diploid components 1 and 3, inferred to de-
rive from distinct WGD events, are found in at least in one region
(green and gray bars in Fig. 4a) but with sizable differences by re-
gion. This inference is again consistent with the idea that the tumor
has been shaped by multiple distinct WGD events, with different
regions of the tumor dominated by cell lineages tracing to different
WGD events.

Figure 4c and d and Supplementary Fig. S9f show the results for
the GBM33 case. Although we observed some similar events to
GBM07, such as (partial) gain on chromosome 7 and loss on
chromosome 9p and partial loss on chromosome 10, the global pat-
tern of CNAs is quite different. First, GBM33 exhibits a pattern
more dominated by focal CNA rather than chromosome-scale
changes. Second, GBM33 shows less extreme changes at sites of
high amplification than does GBM07 even where they amplify com-
mon loci (e.g. large copy numbers in GBM07 on chromosome 4,
Supplementary Fig. S9e and f). Third, there appears to be just a sin-
gle tetraploid inferred clone, clone 3, with pseudotriploid clone 2
descended from it (Fig. 4d). Maximum parsimony would suggest
that the observed single cells are likely largely diploid, with the ex-
ception of clone 7 for which the assignment to diploid or tetraploid
is ambiguous.

Fourth, GBM33 overall shows less pronounced clonal heterogen-
eity, with the single diploid clone 0 dominant in all three tumor
regions. Notably, the tetraploid clone is inferred to be fairly rare,
with the pseudotriploid clone slightly more common but still minor.
The quite different reconstruction in the case of GBM33 versus
GBM07 indicates that the method is sensitive to variations in pro-
files of CNA tumor-to-tumor.

Fig. 4. Application on real GBM07 (a, b) and GBM33 (c, d) cases. (a), (c) The corre-

sponding mixture fraction of each inferred cell component. (b), (d) The phylogenetic

relationship among the inferred cell components (pink) and observed cell compo-

nents (light blue)
Fig. 3. Phylogenetic trees for observed and inferred cell components on simulated

data. The yellow node represents a diploid root cell, the pink nodes are inferred cell

components and the light blue nodes are observed cell components. The number

pair inside each node provides NodeIndex; Ploidy. (a) is the result from the model

only including the JðS;C;C0Þ term, (b) from the model including JðS;C;C0Þ and

jjXT CP �H0 jj and (c) from the complete model
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4 Discussion

We have extended tumor phylogeny methods to incorporate copy
number measurements by DNA-FISH, in addition to bulk and
single-cell sequence data, as a source of more precise measurements
of tumor ploidy and clonal frequencies. The results show that each
source of data contributes separately to a more accurate picture of
copy number evolution in cancers, with the combination of all three
data types yielding improved accuracy in resolution of whole-
genome copy number profiles. We demonstrated by application to
two glioblastoma cases that the new methods can provide novel in-
sight into the role of copy number evolution in cancers, supporting a
model of WGD as an ongoing process of somatic evolution rather
than a single event in early tumor evolution, which may better ex-
plain the importance of WGD as a marker for risk of future progres-
sion. The results suggest the value of supplementing sequence data
with additional data sources such as miFISH in accurately recon-
structing evolution by CNA mechanisms in tumors exhibiting
chromosome instability.

Our work suggests a number of avenues for further research.
One limitation of our method is that few tumors currently are
studied by the combinations of technologies examined here. We sug-
gest that it will be enlightening to conduct further studies where se-
quence is paired with miFISH, or perhaps alternative methods
providing similar ability to estimate ploidy and/or clonal frequency,
particularly for understanding evolution in cancer types prone to
chromosome instability and aneuploidy. Second, the present work,
like our prior work (Lei et al., 2019), suggests the value of an accur-
ate single-cell phylogenetic model in improving deconvolution.
Accurately reconstructing evolutionary trees in copy number space,
even with known single-cell data, remains a challenging problem.
While there is prior theory for reconstructing copy number evolu-
tion (Chowdhury et al., 2015; El-Kebir et al., 2017), no models are
comprehensive for all known mechanisms of CNA evolution and
developing comprehensive models and the algorithmic framework
to make them scalable to large single-cell, whole genome data
remains a challenge. It would also be valuable to extend the method
to encompass automated parameter selection. There are also many
other alternative technologies that might be incorporated into the
mix of multi-omic data to improve phylogeny inference (e.g. long
read or linked read sequencing, single-cell RNA-seq and bulk RNA-
seq) that have been considered in other work (e.g. Tao et al., 2019)
and might provide other synergistic advantages for the present prob-
lem. In principle, it would be especially attractive to include single-
cell RNA-seq to evaluate the effects on gene expression associated
with changes in single-cell DNA-seq, but the high dropout rate in
single-cell sequencing would make this analysis complex in practice,
since RNA-seq dropout cannot be as easily managed by averaging
over larger regions as it is with CNA analysis from DNA-seq. In
addition, there is likely room for improvement in better solving the
central optimization problem of our work. Additional results (see
Supplementary Results) show that increasing the number of rounds
of optimization from 10 to 100 frequently leads to improvement in
the objective function, although this improvement translates into
negligible change in mean accuracy and RMSD measures. This ob-
servation suggests potential for improvement in both the definition
of the objective function, to better match true solution quality, and
in the algorithms, for efficiently solving for the objective.
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