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( 57 ) ABSTRACT 

The technology disclosed relates to training a convolutional 
neural network ( CNN ) to identify and classify images of 
sections of an image generating chip resulting in process 
cycle failures . The technology disclosed includes creating a 
training data set of images of dimensions MxN using labeled 
images of sections of image generating chip of dimensions 
JxK . The technology disclosed can fill the MxN frames 
using horizontal and vertical reflections along edges of IxK 
labeled images positioned in MxN frames . A pretrained 
CNN is further trained using the training data set . Trained 
CNN can classify a section image as normal or depicting 
failure . The technology disclosed can train a root cause CNN to classify process cycle images of sections causing process 
cycle failure . The trained CNN can classify a section image 
by root cause of process failure among a plurality of failure 
categories . 
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BRIEF DESCRIPTION OF THE DRAWINGS DEEP LEARNING - BASED ROOT CAUSE 
ANALYSIS OF PROCESS CYCLE IMAGES 

PRIORITY APPLICATION 

[ 0001 ] This application claims the benefit of U.S. Provi 
sional Patent Application No. 63 / 143,673 , entitled “ DEEP 
LEARNING - BASED ROOT CAUSE ANALYSIS OF 
PROCESS CYCLES , ” filed Jan. 29 , 2021 ( Attorney Docket 
No. ILLM 1044-1 / IP - 2089 - PRV ) . The provisional applica 
tion is incorporated by reference for all purposes . 

INCORPORATIONS 

[ 0002 ] The following materials are incorporated by refer 
ence as if fully set forth herein : 
[ 0003 ] U.S. patent application Ser . No. 171 / 161,595 , 
entitled “ MACHINE LEARNING - BASED ROOT CAUSE 
ANALYSIS OF PROCESS CYCLE IMAGES , " filed Jan. 
28 , 2021 ( Attorney Docket No .: ILLM 1026-2 / IP - 1911 - US ) ; 
[ 0004 ] U.S. patent application Ser . No. 17 / 332,904 , 
entitled , “ MACHINE LERNING - BASED ANALYSIS OF 
PROCESS INDICATORS TO PREDICT SAMPLE 
REEVALUATION SUCCESS , ” filed May 27 , 2021 ( Attor 
ney Docket No .: ILLM 1027-2 / IP - 1973 - US ) ; 
[ 0005 ] U.S. patent application Ser . No. 17 / 548,424 , 
entitled , " MACHINE LEARNING - BASED GENOTYP 
ING PROCESS OUTCOME PREDICTION USING 
AGGREGATE METRICS , ” filed Dec. 10 , 2021 ( Attorney 
Docket No .: ILLM 1028-2 / IP - 1978 - US ) . 

FIELD OF THE TECHNOLOGY DISCLOSED 

[ 0010 ] In the drawings , like reference characters generally 
refer to like parts throughout the different views . Also , the 
drawings are not necessarily to scale , with an emphasis 
instead generally being placed upon illustrating the prin 
ciples of the technology disclosed . In the following descrip 
tion , various implementations of the technology disclosed 
are described with reference to the following drawings , in 
which : 
[ 0011 ] FIG . 1 shows an architectural level schematic of a 
system in which process cycle images from genotyping 
instruments are classified and root cause of bad or failed 
images is determined . 
[ 0012 ] FIG . 2 illustrates subsystem components of feature 
generator of FIG . 1 . 
[ 0013 ] FIG . 3 presents process steps for an example geno 
typing process . 
[ 0014 ] FIG . 4 presents images of sections arranged in an 
image generating chip after successful process completion . 
[ 0015 ) FIGS . 5A and 5B present examples of failed sec 
tion images due to hybridization failure during genotyping 
process . 
[ 0016 ] FIGS . 5C and 5D present examples of failed sec 
tion images due to spacer shift failures . 
[ 0017 ] FIG . 5E presents examples of failed section images 
due to offset failures . 
[ 0018 ] FIG . 5F presents examples of failed section images 
due to surface abrasion failure . 
[ 0019 ] FIGS . 5G and 5H present examples of failed sec 
tion images due to reagent flow failure . 
[ 0020 ] FIG . 51 presents examples of failed section images 
for which source of failure is unknown . 
[ 0021 ] FIG . 6A is an example of 96 Eigen image compo 
nents selected by rank ordering of principal components that 
are generated using Principal Component Analysis ( PCA ) . 
[ 0022 ] FIG . 6B is an enlargement of the top 40 Eigen 
image components selected from the 96 images in FIG . 6A . 
[ 0023 ] FIG . 7A illustrates image rescaling and flattening 
of section images for input to Principal Component Analy 
sis . 
[ 0024 ] FIG . 7B illustrates creation of a basis of Eigen 
images using Principal Component Analysis . 
[ 0025 ] FIG . 8A illustrates an example of feature genera 
tion using intensities of areas of sections . 
[ 0026 ] FIG . 8B illustrates another example of feature 
generation using intensities of areas of sections . 
[ 0027 ] FIG . 9 is a graphical illustration of one - vs - the - rest 
( OvR ) classifier . 
[ 0028 ] FIG . 10A illustrates training of a binary ( good vs. 
bad ) classifier and a multiclass ( root cause ) classifier using 
labeled training data comprising process cycle images . 
[ 0029 ] FIG . 10B illustrates a two - step process in which 
production process cycle images are classified as good vs. 
bad and further a failure category of the bad images is 
determined . 
[ 0030 ] FIGS . 11A and 11B present examples of feature 
engineering techniques applied to training data images . 
[ 0031 ] FIG . 12A illustrates transfer learning steps to train 
a convolutional neural network using fine - tuning . 
[ 0032 ] FIG . 12B presents network architecture of an 
example convolutional neural network model . 
[ 0033 ] FIG . 12C presents an example architecture of a first 
convolutional neural network to identify and classify bad 
process cycle images . 

[ 0006 ] The technology disclosed relates to classification 
of images for evaluation and root cause failure analysis of 
production processes . 

BACKGROUND 

[ 0007 ] The subject matter discussed in this section should 
not be assumed to be prior art merely as a result of its 
mention in this section . Similarly , a problem mentioned in 
this section or associated with the subject matter provided as 
background should not be assumed to have been previously 
recognized in the prior art . The subject matter in this section 
merely represents different approaches , which in and of 
themselves can also correspond to implementations of the 
claimed technology . 
[ 0008 ] Genotyping is a process that can take multiple days 
to complete . The process is vulnerable to both mechanical 
and chemical processing errors . Collected samples for geno 
typing are extracted and distributed in sections and areas of 
image generating chips . The samples are then chemically 
processed through multiple steps to generate fluorescing 
images . The process generates a quality score for each 
section analyzed . This quality score cannot provide insight 
into the root cause of failure a low - quality process . In some 
cases , a failed section image still produces an acceptable 
quality score . 
[ 0009 ] Accordingly , an opportunity arises to introduce 
new methods and systems to evaluate section images and 
determine root causes of failure analysis during production 
genotyping 
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[ 0034 ] FIGS . 12D and 12E present an example architec 
ture of a second convolutional neural network to identify 
and classify bad process cycle images . 
[ 0035 ] FIG . 13 presents performance of two example 
convolutional neural networks using different feature engi 
neering techniques . 
[ 0036 ] FIG . 14 presents summary of model performance 
metrics for failure categories . 
[ 0037 ] FIG . 15 presents examples of failed section images 
with mixed defects indicating manually annotated defect 
labels and predicted defect categories . 
[ 0038 ] FIG . 16 presents a process flowchart for training a 
good vs. bad classifier and applying the trained classifier to 
classify images of sections of an image generating chip . 
[ 0039 ] FIG . 17 is a simplified block diagram of a computer 
system that can be used to implement the technology dis 
closed . 

DETAILED DESCRIPTION 

[ 0040 ] The following discussion is presented to enable any 
person skilled in the art to make and use the technology 
disclosed , and is provided in the context of a particular 
application and its requirements . Various modifications to 
the disclosed implementations will be readily apparent to 
those skilled in the art , and the general principles defined 
herein may be applied to other implementations and appli 
cations without departing from the spirit and scope of the 
technology disclosed . Thus , the technology disclosed is not 
intended to be limited the implementations shown , but is 
to be accorded the widest scope consistent with the prin 
ciples and features disclosed herein . 

image , or even intermediate fluorescing images , can be 
analyzed to monitor production and conduct failure analysis . 
[ 0043 ] The vast majority of production analyses are suc 
cessful . The failed analyses currently are understood to fit in 
five categories plus a residual failure category . The five 
failure categories are hybridization or hyb failures , spacer 
shift failures , offset failures , surface abrasion failures and 
reagent flow failures . The residual category is unhealthy 
patterns due to mixed effects , unidentified causes , and weak 
signals . In time , especially as root cause analysis leads to 
improved production , more and different causes may be 
identified . 

[ 0044 ] The first image processing technology applied to 
quality control and failure analysis is evolved from facial 
recognition by Eigen face analysis . From tens of thousands 
of labeled images , a linear basis of 40 to 100 or more image 
components was identified . One approach to forming an 
Eigen basis was principal component analysis ( PCA ) fol 
lowed by rank ordering of components according to a 
measure of variability explained . It was observed that 40 
components explained most of the variability . Beyond 100 
components , the additional components appeared to reflect 
patterns of noise or natural variability in sample processing . 
The number of relevant components is expected to be 
impacted by image resolution . Here , resolution reduction 
was applied so that sections of the image generating chip 
were analyzed at a resolution of 180x80 pixels . This was 
sufficient resolution to distinguish successful from unsuc 
cessful production and then to classify root causes of failure 
among six failure categories . No formal sensitivity analysis 
was applied , but it is expected that slightly lower resolution 
images also would work and that images with 4 to 22 times 
this resolution could be processed in the same way , though 
with increased computational expense . Each image to be 
analyzed by Eigen image analysis is represented as a 
weighted linear combination of basis images . Each weight 
for the ordered set of basis components is used as a feature 
for training a classifier . For instance , in one implementation , 
96 weights for components of labeled images were used to 
train random forest classifiers . A random forest classifier 
with 200 trees and a depth of 20 worked well . Two tasks 
were performed by the random forest classifiers : separation 
of successful and unsuccessful production images , then root 
cause analysis of the unsuccessful production images . This 
two - stage classification was selected due to the dominance 
of successful production runs , but a one - stage classification 
also could be used . 

[ 0045 ] The second image processing technology applied 
involved thresholding of image areas . A production image of 
a section of an image generating chip captures several 
physically separated areas . Structures that border the section 
and that separate physical areas of the section are visible in 
a production image . The thresholding strategy involves 
separating the active areas from the border structures and 
then distinguishing among the separated areas . Optionally , 
the structures that separate the physical areas also can be 
filtered out of the image . At least the active areas are subject 
to thresholding for luminescence . The thresholding deter 
mines how much of an active area is producing a desired 
signal strength . Each active area is evaluated after thresh 
olding for success or failure . A pattern of failures among 
areas and sections of an image generating chip can be further 
evaluated for root cause classification . 

Introduction 

[ 0041 ] The technology disclosed applies vision systems 
and image classification for evaluation and root cause failure 
analysis of production genotyping . Three distinct 
approaches are described , first involving Eigen images , 
second based on thresholding by area , and third using deep 
learning models such as convolutional neural networks ( or 
CNNs ) . Principal components analysis ( PCA ) and non 
negative matrix factorization ( NMF ) are among the tech 
niques disclosed . Other dimensionality reduction techniques 
that can applied to images include , independent component 
analysis , dictionary learning , sparse principal component 
analysis , factor analysis , mini - batch K - means . Variations of 
image decomposition and dimensionality reduction tech 
niques can be used . For example , PCA can be implemented 
using singular value decomposition ( SVD ) or as kernel 
PCA . Outputs from these techniques are given as inputs to 
classifiers . Classifiers applied can include random forest , 
K - nearest neighbors ( KNN ) , multinomial logistic regres 
sion , support vector machines ( SVM ) , gradient boosted 
trees , Naïve Bayes , etc. As larger bodies of labeled images 
become available , convolutional neural networks such as 
ResNet , VGG , ImageNet can also be used as presented 
below in description of the third image processing technol 
ogy . 
[ 0042 ] The genotyping production process is vulnerable to 
both mechanical and chemical processing errors . Collected 
samples are extracted , distributed in sections and areas of 
BeadChips , then chemically processed through multiple 
steps to generate fluorescing images . A final fluorescing 
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[ 0046 ] Processing of production images to detect failed 
production runs and determine root causes , can be per 
formed immediately during production , more quickly even 
than results are read from the image generating chip and 
judged for quality . This image processing can be done more 
quickly because reducing the size of an image in pixels to 
1/20 times the original size on a side greatly reduces com 
putational requirements and direct processing of a reduced 
resolution image does not require correlation of individual 
glowing pixels in an area to individual probes . Quick 
turnaround of root cause analysis can be used to correct 
upstream processes before chemicals and processing time 
are wasted . 
[ 0047 ] The third image processing technology involves 
applying deep learning models such as convolutional neural 
networks ( CNNs ) . ResNet ( He et al . CVPR 2016 available 
at << arxiv.org/abs/1512.03385 >> ) and VGG ( Simonyan et 
al . 2015 available at << arxiv.org/abs/1409.1556 >> ) are 
examples of convolutional neural networks ( CNNs ) used to 
identify and classify . We applied ResNet - 18 and VGG - 16 
architectures of respective models for detecting failed 
images and classifying the failed images into respective 
failure categories . The CNN model parameters are pre 
trained on ImageNet dataset ( Deng et al . 2009 , “ ImageNet : 
A large - scale hierarchical image database ” , published in 
proceedings of IEEE Conference on Computer Vision and 
Pattern Recognition , pp . 248-255 ) which contains around 14 
million images . The pre - trained models are fine - tuned using 
labeled images of sections of image generating chips . 
Around 75 thousand labeled images of sections are used for 
fine - tuning the pre - trained CNNs . The training data consists 
of normal images from successful process cycles and abnor 
mal ( or bad , or failed ) images of sections from failed process 
cycles . The images from failed process cycles belong to five 
failure categories presented above . 
[ 0048 ] The ResNet - 18 and VGG - 16 CNN models can use 
a square input image of size 224x224 pixels . In one imple 
mentation , sections of the image generating chip are rect 
angular such as 180x80 pixels as described above . Larger 
image sizes of sections can be used . The technology dis 
closed applies feature engineering to create a training data 
using rectangular labeled images which may be smaller than 
224x224 pixels sized images required as input to CNN 
models . The technology can apply three feature engineering 
techniques to create the input data set including , cropping , 
zero padding , and reflection padding . 
[ 0049 ] In cropping , the central part of rectangular shaped 
section images of image generating chip are cropped to 
224x224 pixels size . In this case , the input image of section 
is larger than 224x224 pixels . In one implementation , the 
input section images are of size 504x224 pixels . Other sizes 
of labeled images , larger than 224x224 may be used to crop 
out square portions . The input images are cropped to match 
the input image size ( 224x224 pixels ) required by the CNN 
models . 

[ 0050 ] In zero - padding , the labeled input image size is 
smaller than 224x224 pixels . For example , the input image 
can be 180x80 pixels . The input labeled image of smaller 
size ( such as 180x80 pixels ) is placed in an analysis frame 
of 224x224 pixels . The image can be placed at any position 
inside the analysis frame . The pixels in surrounding area in 
the analysis frame can be zero - padded or in other words the 

surrounding pixels are assigned zero image intensity values . 
The larger sized analysis frame can then be given as input to 
the CNN models . 
[ 0051 ] In reflection padding , the smaller sized labeled 
input image can be placed in center of the larger sized 
analysis frame . The labeled image is then reflected horizon 
tally and vertically along the edges to fill the surrounding 
pixels in larger sized analysis frames ( 224x224 pixels ) . The 
reflected labeled image is given as input to the CNN models . 
The reflection padding can produce better results as features 
in the input labeled images are copied at multiple locations 
in the larger sized analysis frames . 
[ 0052 ] The technology disclosed can perform data aug 
mentation to increase the size of the training data . Horizontal 
and vertical translation can be performed by placing the 
smaller sized ( JxK pixels ) rectangular labeled input images 
at multiple locations in the larger sized ( MXN pixels ) 
analysis frames . In one implementation , the rectangular 
labeled input images are of size 180x80 pixels and larger 
sized analysis frames are 224x224 pixels . Other sizes of the 
labeled input images and analysis frames can be used . In one 
implementation , the JxK images can be systematically trans 
lated horizontally , vertically or diagonally in the MxN 
analysis frame to generate additional training data . In one 
implementation , the JxK images can be randomly positioned 
at different locations in the MxN analysis frames to generate 
additional training data . 
[ 0053 ] A two - step detection and classification process can 
be applied using two separately trained convolutional neural 
networks ( CNN ) . A first CNN is trained for detection task 
in which the trained classifier can classify the images as 
normal or depicting process failure . The failed process cycle 
images can be fed to a second CNN , trained to classify the 
images by root cause of process failure . In one implemen 
tation , the system can classify the images into five different 
types of failure types listed above . The two - step process can 
be combined in a one step process using a CNN to classify 
a production section image as normal or as belonging to one 
of the failure categories . 

Environment 

[ 0054 ] We describe a system for early prediction of failure 
in genotyping systems . Genotyping is the process of deter 
mining differences in genetic make - up ( genotype ) of an 
individual by examining the individual's DNA sequence 
using biological assays and comparing it to a reference 
sequence . Genotyping enables researchers to explore genetic 
variants such as single nucleotide polymorphisms ( SNPs ) 
and structural changes in DNA . The system is described 
with reference to FIG . 1 showing an architectural level 
schematic of a system in accordance with an implementa 
tion . Because FIG . 1 is an architectural diagram , certain 
details are intentionally omitted to improve the clarity of the 
description . The discussion of FIG . 1 is organized as fol 
lows . First , the elements of the figure are described , fol 
lowed by their interconnection . Then , the use of the elements 
in the system is described in greater detail . 
[ 0055 ] FIG . 1 includes the system 100 . This paragraph 
names labeled parts of system 100. The figure illustrates 
genotyping instruments 111 , a process cycle images data 
base 115 , a failure categories labels database 117 , a labeled 
process cycle images database 138 , a trained good vs. bad 
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a classifier 151 , a basis of Eigen images database 168 , 
trained root cause classifier 171 , a feature generator 185 , and 
a network ( s ) 155 . 
[ 0056 ] The technology disclosed applies to a variety of 
genotyping instruments 111 , also referred to as genotyping 
scanners and genotyping platforms . The network ( s ) 155 
couples the genotyping instruments 111 , the process cycle 
images database 115 , the failure categories labels database 
117 , the labeled process cycle images database 138 , the 
trained good vs. bad classifier 151 , the basis of Eigen images 
database 168 , the trained root cause classifier 171 , and the 
feature generator 185 , in communication with one another . 
[ 0057 ] The genotyping instruments can include Illumina's 
BeadChip imaging systems such as ISCANTM system . The 
instrument can detect fluorescence intensities of hundreds to 
millions of beads arranged in sections on mapped locations 
on image generating chips . The genotyping instruments can 
include an instrument control computer that controls various 
aspects of the instrument , for example , laser control , preci 
sion mechanics control , detection of excitation signals , 
image registration , image extraction , and data output . The 
genotyping instruments can be used in a wide variety of 
physical environments and operated by technicians of vary 
ing skills levels . The sample preparation can take two to 
three days and can include manual and automated handling 
of samples . 
[ 0058 ] We illustrate process steps of an example genotyp 
ing process 300 in FIG . 3. This example genotyping process 
is referred to as Illumina's INFINIUMTM Assay Workflow . 
The process is designed to investigate many SNPs at exten 
sive levels of loci multiplexing . Using a single bead type and 
dual - color ( such as red and green ) channel approach , the 
process scales genotyping from hundreds to millions of 
SNPs per sample . The process starts with accession and 
extraction of DNA samples . The process can operate with 
relatively low input sample such as 200 ng which can assay 
millions of SNP loci . The samples are amplified . The ampli 
fication process can take from a few hours to overnight to 
complete . The amplified sample undergoes controlled enzy 
matic fragmentation . This is followed by alcohol precipita 
tion and resuspension . The image generating chip is pre 
pared for hybridization in a capillary flow - through chamber . 
The samples are then applied to prepared image generating 
chips and incubated overnight . During this overnight hybrid 
ization , the samples anneal to locus - specific 50 - mers cova 
lently linked to up to millions of bead types . One bead type 
corresponds to each allele per SNP locus . The allelic speci 
ficity is conferred by enzymatic base extension followed by 
fluorescent staining . The genotyping instrument or scanner 
( such as ISCANTM system ) detects the fluorescence inten 
sities of the beads and performs genotype calling . 
[ 0059 ] In one example , the results of the genotyping are 
presented using a metric called " Call Rate ” . This metric 
represents the percentage of genotypes that were correctly 
scanned on the image generating chip . A separate call rate is 
reported per section of the image generating chip . A thresh 
old can be used to accept or reject the results . For example , 
a call rate of 98 % or more can be used to accept the 
genotyping results for a section . A different threshold value 
such as lower than 98 % or higher than 98 % can be used . If 
the call rate for a section is below the threshold , the 
genotyping process is considered as failed . The genotyping 
process can span over many days and is therefore , expensive 

to repeat . Failures in genotyping process can occur due to 
operational errors ( such as mechanical or handling errors ) or 
chemical processing errors . 
[ 0060 ] The genotyping systems can provide process cycle 
images of sections of the image generating chip along with 
respective call rates of sections upon completion of the 
genotyping process . The technology disclosed can process 
these section images to classify whether the genotyping 
process is successful ( good image of section ) or not suc 
cessful ( bad or failed image of section ) . The technology 
disclosed can further process the bad or failed images to 
determine a category of failure . Currently , the system can 
classify the failed images in one of the six failure categories : 
hybridization or hyb failures , spacer shift failures , offset 
failures , surface abrasion failures , reagent flow failures and 
overall unhealthy images due to mixed effects , unknown 
causes , weak signals etc. In time , especially as root cause 
analysis leads to improved production , more and different 
causes may be identified . 
[ 0061 ] We now refer to FIG . 1 to provide description of 
remaining components of the system 100. The failure cat 
egory labels for the six failure types can be stored in the 
failure categories labels database 117. A training dataset of 
labeled process image cycles is stored in the database 138 . 
The labeled training examples can comprise of successful 
( good ) and unsuccessful ( bad ) process cycle images . The 
unsuccessful process cycle images are labeled as belonging 
to one of the six failure categories listed above . In one 
implementation , the training database 138 comprises of at 
least 20,000 training examples . In another implementation , 
the size of the training data set is increased up to 75,000 
training examples using feature engineering techniques . The 
size of the training database can increase as more labeled 
image data is collected from laboratories using the geno 
typing instruments . 
[ 0062 ] The technology disclosed includes three indepen 
dent image processing techniques to extract features from 
process cycle images . The feature generator 185 can be used 
to apply one of the three techniques to extract features from 
process cycle images for input to machine learning models . 
The first image processing technique is evolved from facial 
recognition by Eigen face analysis . A relatively small num 
ber of linear basis such as from 40 to 100 or more image 
components are identified from tens of thousands of labeled 
images . One approach to form Eigen basis is Principal 
Component Analysis ( PCA ) . The production cycle images 
are represented as a weighted linear combination of basis 
images for input to classifiers . For example , in one imple 
mentation , 96 weights for components of labeled images are 
used to train the classifiers . The basis of Eigen images can 
be stored in the database 168 . 

[ 0063 ] The second image processing technique to extract 
features involves thresholding of section images . A produc 
tion image of a section of an image generating chip captures 
several physically separated areas . Structures that border the 
section and that separate physical areas of the section are 
visible in a production image . Thresholding technique deter 
mines how much of an active area is producing a desired signal strength . The output from thresholding technique can 
be given as input to a classifier to distinguish good images 
from bad images . A pattern of failures among areas and 
sections of an image generating chip can be further evalu 
ated for root cause analysis . 
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niques , such as username / password , Open Authorization 
( OAuth ) , Kerberos , Secured , digital certificates and more , 
can be used to secure the communications . 

Feature Generator — System Components 

[ 0064 ] The third image processing technique includes a 
variety of feature engineering techniques to prepare images 
for input to deep learning models . The section images of 
image generating chips are rectangular in shape . An image 
generating chip can have 12 , 24 , 48 , or 96 sections arranged 
in two or more columns . The convolutional neural networks 
( CNN ) applied by the technology disclosed require square 
shaped input images . Therefore , the system includes logic to 
position rectangular shaped ( JxK pixels ) section images into 
square shaped ( MxN pixels ) analysis frames . 
[ 0065 ] The system can apply one or more of the following 
feature engineering techniques . The system can apply zero 
padding to fill pixels surrounding the section image in the 
larger square shaped analysis frames . The system can crop 
a center portion of a section image in square dimensions and 
fill the analysis frame with the cropped section image . In this 
case , the section image is of larger dimensions than the 
analysis frame . When the labeled section image is smaller 
than the analysis frame , the system can position the labeled 
input image inside the analysis frame . The system can use 
horizontal and vertical reflections along the edges of the 
input section image to fill the larger sized analysis frame . 
The system can augment the labeled training data by using 
translation in which the labeled input image is positioned at 
multiple locations in the analysis frame . 
[ 0066 ] The image features of production images generated 
by the feature generator 185 are given as input to trained 
classifiers 151 and 171. Two types of classifiers are trained . 
A good vs. bad classifier can predict successful and unsuc 
cessful production images . A root cause analysis classifier 
can predict failure categories of unsuccessful images . In one 
implementation , classifiers used by the technology disclosed 
include random forest classifiers . Other examples of classi 
fiers that can be applied include K - nearest neighbors ( KNN ) , 
multinomial logistic regression , and support vector 
machines . In another implementation of the technology 
disclosed , convolutional neural networks ( CNNs ) are 
applied to identify and classify images of sections of image 
generating chip . 
[ 0067 ] Completing the description of FIG . 1 , the compo 
nents of the system 100 , described above , are all coupled in 
communication with the network ( s ) 155. The actual com 
munication path can be point - to - point over public and / or 
private networks . The communications can occur over a 
variety of networks , e.g. , private networks , VPN , MPLS 
circuit , or Internet , and can use appropriate application 
programming interfaces ( APIs ) and data interchange for 
mats , e.g. , Representational State Transfer ( REST ) , 
JavaScript Object Notation ( JSON ) , Extensible Markup 
Language ( XML ) , Simple Object Access Protocol ( SOAP ) , 
Java Message Service ( UMS ) , and / or Java Platform Module 
System . All of the communications can be encrypted . The 
communication is generally over a network such as the LAN 
( local area network ) , WAN ( wide area network ) , telephone 
network ( Public Switched Telephone Network ( PSTN ) , Ses 
sion Initiation Protocol ( SIP ) , wireless network , point - to 
point network , star network , token ring network , hub net 
work , Internet , inclusive of the mobile Internet , via 
protocols such as EDGE , 3G , 4G LTE , Wi - Fi and WiMAX . 
The engines or system components of FIG . 1 are imple 
mented by software running on varying types of computing 
devices . Example devices are a workstation , a server , a 
computing cluster , a blade server , and a server farm . Addi 
tionally , a variety of authorization and authentication tech 

[ 0068 ] FIG . 2 is a high - level block diagram of components 
of feature generator 185. These components are computer 
implemented using a variety of different computer systems 
as presented below in description of FIG . 16. The illustrated 
components can be merged or further separated , when 
implemented . The feature generator 185 consists of three 
high - level components implementing the three image pro 
cessing techniques : Principal Component Analysis or PCA 
based feature generator 235 , image segmentation - based fea 
ture generator 255 , and training data generator for CNN 275 . 
The PCA - based feature generator comprises of an image 
scaler 237 and a basis of Eigen images creator 239. The 
image segmentation - based feature generator 255 comprises 
of an image transformer 257 and an intensity extractor 259 . 
The training data generator for CNN 275 comprises of an 
image cropper 277 , an image translator 279 , and an image 
reflector 281. In the following sections , we present further 
details of the implementation of these components . 
[ 0069 ] PCA - Based Feature Generator 
[ 0070 ] The first image processing technique is evolved 
from facial recognition by Eigen face analysis . One 
approach to forming an Eigen basis is principal component 
analysis ( PCA ) . The PCA - based feature generator 235 
applies PCA to resized process images . The image scaler 
component 237 resizes the process cycle images . Scaling 
reduces size of process images so that they can be processed 
in a computationally efficient manner by the basis of Eigen 
images creator component 239. We present details of these 
components in the following sections . 

2 

Image Scaler 
[ 0071 ] Higher resolution images obtained from genotyp 
ing instruments or scanners can require more computational 
resources to process . The images obtained from genotyping 
scanners are resized by the image scaler 237 so that images 
of sections of image generating chips are analyzed at a 
reduced resolution such as 180x80 pixels . Throughout this 
text , we are referring to scaling ( or rescaling ) as resampling 
an image . Resampling changes the number of pixels in the 
image which are displayed . When the number of pixels in 
the initial image are increased , the image size increases , and 
it is referred to as upsampling . When the number of pixels 
in the initial image are decreased , the image size decreases , 
and it is referred to as downsampling . In one implementa 
tion , images of the sections obtained from the scanner are at 
a resolution of 3600x1600 pixels . In another implementa 
tion , images of sections obtained from the scanner are at a 
resolution of 3850x1600 pixels . These original images are 
downsampled to reduce the size of images in pixels to 1/20 
times per side from the original resolution . This is sufficient 
resolution to distinguish successful production images from 
unsuccessful production images and then to classify root 
causes of failure among six failure categories . Images can be 
downsampled to 1/4 to 1/40 the number of pixels per side at the 
original resolution and processed in the same way . In 
another implementation , the images can be downsampled to 
1/2 to 1/50 the number of pixels per side at the original 
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Step 1 : Accessing Multi - Dimensional Correlated Data resolution and processed in the same way . An example 
technique to resample the high - resolution images is pre 
sented below . 
[ 0072 ] The technology disclosed can apply a variety of 
interpolation techniques to reduce the size of the production 
images . In one implementation , bilinear interpolation is used 
to reduce size of the section images . Linear interpolation is 
a method of curve fitting using linear polynomials to con 
struct new data points with the range of a discrete set of 
known data points . Bilinear interpolation is an extension of 
linear interpolation for interpolating functions of two vari 
ables ( e.g. , x and y ) on a two - dimensional grid . Bilinear 
interpolation is performed using linear interpolation first in 
one direction and then again in a second direction . Although 
each step is linear in the sampled values and in the position , 
the interpolation as a whole is not linear but rather quadratic 
in the sample location . Other interpolation techniques can 
also be used for reducing the size of the section images 
( rescaling ) such as nearest - neighbor interpolation and resa 
mpling using pixel area relation . 

[ 0076 ] The first step in application of PCA is to access 
high dimensional data . In one instance , the PCA - based 
feature generator used 20,000 labeled images as training 
data . Each image is resized to 180x80 pixels resolution and 
represented as a point in a 14,400 - dimensional space , one 
dimension per pixel . This technique can handle images of 
higher resolution or lower resolution than specified above . 
The size of the training data set is expected to increase as we 
collect more labeled images from laboratories . 

Step 2 : Standardization of the Data 
a 

a 

[ 0077 ] Standardization ( or Z - score normalization ) is the 
process of rescaling the features so that they have properties 
of a Gaussian distribution with mean equal to zero or u = 0 
and standard deviation from the mean equal to 1 or o = 1 . 
Standardization is performed to build features that have 
similar ranges to each other . Standard score of an image can 
be calculated by subtracting the mean ( image ) from the 
image and dividing the result by standard deviation . As PCA 
yields a feature subspace that maximizes the variance along 
the axes , it helps to standardize the data so that it is centered 
across the axes . 

Basis of Eigen Images Creator 

Step 3 : Computing Covariance Matrix 
a 

a 

[ 0078 ] The covariance matrix is a dxd matrix of d - dimen 
sional space where each element represents covariance 
between two features . The covariance of two features mea 
sures their tendency to vary together . The variation is the 
average of the squared deviation of a feature from its mean . 
Covariance is the average of the products of deviations of 
feature values from their means . Consider feature k and 
feature j . Let ( x ( 1 , j ) , x ( 2 , j ) , ... , x ( i , j ) } be a set of i 
examples of feature j , and let { x { 1 , k ) , x ( 2 , k ) , x ( i , k ) } 
be a set of i examples of feature k . Similarly , let x ; be the 
mean of feature j and Xt be the mean of feature k . The 
covariance of feature j and feature k is calculated as follows : 

1 ( 1 ) 
jk = ( x ( i , j ) – 1 ) ( x ( i , k ) – Xk ) n - 1 

[ 0073 ] The first image processing technique applied to 
section images to generate input features for classifiers is 
evolved from facial recognition by Eigen face analysis . 
From tens of thousands of labeled images , a linear basis of 
40 to 100 or more image components is identified . One 
approach to forming the basis of Eigen images is principal 
component analysis ( PCA ) . A set B of elements ( vectors ) in 
a vector space Vis called a basis , if every element of V may 
be written in a unique way as a linear combination of 
elements of B. Equivalently , B is a basis if its elements are 
linearly independent , and every element of Vis a linear 
combination of elements of B. A vector space can have 
several bases . However , all bases have the same number of 
elements , called the dimension of the vector space . In our 
technology , the basis of the vector space are Eigen images . 
[ 0074 ] PCA is often used to reduce the dimensions of a 
d - dimensional dataset by projecting it onto a k - dimensional 
subspace where k < d . For example , a resized labeled image 
in our training database describes a vector of dimension 
d = 14,400 - dimensional space ( 180x80 pixels ) . In other 
words , the image is a point in 14,400 - dimensional space . 
Eigen space - based approaches approximate the image vec 
tors with lower dimension feature vectors . The main sup 
position behind this technique is that the image space given 
by the feature vectors has a lower dimension than the image 
space given by the number of pixels in the image and that the 
recognition of images can be performed in this reduced 
space . Images of sections of image generating chips , being 
similar in overall configuration , will not be randomly dis 
tributed in this huge space and thus can be described by a 
relatively low dimensional subspace . The PCA technique 
finds vectors that best account for the distribution of section 
images within the entire image space . These vectors define 
the subspace of images which is also referred to as “ image 
space ” . In our implementation , each vector describes a 
180x80 pixels image and is a linear combination of images 
in the training data . In the following text , we present details 
of how principal component analysis ( PCA ) can be used to 
create the basis of Eigen images . 
[ 0075 ] The PCA - based analysis of labeled training images 
can comprise of the following five steps . 

We can express the calculation of the covariance matrix via 
the following matrix equation : 

a 

( 2 ) 1 
? = 

n - 1 m ; « X - - ( ( X - 5 ) * ( X – 1 ) ) 

Where the mean vector can be represented as : 

n1 

X = - 
12 13 

[ 0079 ] The mean vector is a d - dimensional vector where 
each value in this vector represents the sample mean of a 
feature column in the training dataset . The covariance value 
Ojk can vary between the “ - ( 0 ; } ) ( Oik ) ” i.e. , inverse linear 
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correlation to “ + ( 0 : ) ( Oik ) ” linear correlation . When there is 
is zero . no dependency between two features the value of Ojk 

Step 4 : Calculating Eigenvectors and Eigenvalues 
[ 0080 ] The eigenvectors and eigenvalues of a covariance 
matrix represent the core of PCA . The eigenvectors ( or 
principal components ) determine the directions of the new 
feature space and the eigenvalues determine their magni 
tudes . In other words , eigenvalues explain the variance of 
the data along the axes of the new feature space . Eigen 
decomposition is a method of matrix factorization by rep 
resenting the matrix using its eigenvectors and eigenvalues . 
An eigenvector is defined as a vector that only changes by 
a scalar when linear transformation is applied to it . If A is a 
matrix that represents the linear transformation , v is the 
eigenvector and 2 , is the corresponding eigenvalue , it can be 
expressed as Av = av . A square matrix can have as many 
eigenvectors as it has dimensions . If we represent all eigen 
vectors as columns of a matrix V and corresponding eigen 
values as entries of a diagonal matrix L , the above equation 
can be represented as AV = VL . In case of a covariance matrix 
all eigenvectors are orthogonal to each other and are the 
principal components of the new feature space . 

as images of sections on image generating chips ) each with 
p dimensions ( e.g. , 14,400 ) . Thus , matrix X hasp rows and 
n columns . We want to reduce the p dimensions to r 
dimensions or in other words create a rank r approximation . 
NMF approximates matrix X as a product of two matrices : 
W ( p rows and r columns ) and H ( r rows and n columns ) . 
[ 0084 ] The interpretation of matrix W is that each column 
is a basis element . By basis element we mean some com 
ponent that is present in the n original data points ( or 
images ) . These are the building blocks from which we can 
reconstruct approximations to all of the original data points 
or images . The interpretation of matrix H is that each column 
gives the coordinates of a data point in the basis matrix W. 
In other words , it tells us how to reconstruct an approxima 
tion to the original data point from a linear combination of 
the building blocks in matrix W. In case of facial images , the 
basis elements ( or basis images ) in matrix W can include 
features such as eyes , noses , lips , etc. The columns of matrix 
H indicate which features are present in which image . 
[ 0085 ] Image Segmentation - Based Feature Generator 
[ 0086 ] The second image processing technique to extract 
features from process cycle images is based on thresholding 
of image areas . The image segmentation - based feature gen 
erator 255 applies thresholding by first segmenting images 
of sections of an image generating chip using image seg 
mentor 257 and then extracting intensity of active areas or 
regions of interest of a section image . The thresholding 
determines how much of an active area is producing a 
desired signal strength . 
[ 0087 ] An image generating chip can comprise of multiple 
sections such as 24 , 48 , 96 or more , organized into rows and 
columns . This design enables processing of multiple 
samples in one process cycle as many samples ( one per 
section ) can be processed in parallel . A section is physically 
separated from other sections so that samples do not mix 
with each other . Additionally , a section can be organized into 
multiple parallel regions referred to as “ slots ” . The struc 
tures at borders of sections and slots are therefore visible in 
the process cycle images from genotyping scanners . We 
present below , details of the two components of image 
segmentation - based feature generator 255 that can imple 
ment techniques to transform section images for extraction 
of image features . 

Step 5 : Using Explained Variance to Select Basis for Eigen 
Images 

Image Transformer 

[ 0081 ] The above step can result in 14,400 principal 
components for our implementation which is equal to the 
dimension of the feature space . An eigenpair consists of the 
eigenvector and the scalar eigenvalue . We can sort the eigen 
pairs based on eigenvalues and use a metric referred to as 
“ explained variance ” to create a basis of eigen images . The 
explained variance indicates how much information or 
variance ) can be attributed to each of the principal compo 
nent . We can plot the results of explained measure values on 
a two - dimensional graph . The sorted principal components 
are represented along x - axis . A graph can be plotted indi 
cating cumulative explained variance . The first in compo 
nents that represent a major portion of the variance can be 
selected . 
[ 0082 ] In our implementation , the first 40 components 
expressed a high percentage of the explained variance , 
therefore , we selected the first 40 principal components to 
form bases of our new feature space . In other implementa 
tions , 25 to 100 principal components or more than 100 
principal components , up to 256 or 512 principal compo 
nents , can be selected to create a bases of Eigen images . 
Each production image to be analyzed by Eigen image 
analysis is represented as a weighted linear combination of 
the basis images . Each weight of the ordered set of basis 
components is used as a feature for training the classifier . 
For instance , in one implementation , 96 weights for com 
ponents of labeled images were used to train the classifier . 
[ 0083 ] The technology disclosed can use other image 
decomposition and dimensionality reduction techniques . For 
example , non - negative matrix factorization ( NMF ) which 
learns a parts - based representation of images as compared to 
PCA which learns complete representations of images . 
Unlike PCA , NMF learns to represent images with a set of 
basis images resembling parts of images . NMF factorizes a 
matrix X into two matrices W and H , with the property that 
all three matrices have no negative elements . Let us assume 
that matrix X is set - up so that there are n data points ( such 

[ 0088 ] The image transformer 257 applies a series of 
image transformation techniques to prepare the section 
images for extracting intensities from regions of interest . In 
one implementation , this process of image transformation 
and intensity extraction is performed by some or all of the 
following five steps . The image transformation converts 
grayscale image of a section into a binary image consisting 
of black and bright pixels . Average intensity values of active 
areas of grayscale image and binary image are given as input 
features to a classifier to classify the image as a healthy 
( good ) or unhealthy ( bad ) image . In the following text we 
present details of the image transformation steps which 
include applying thresholding to convert the grayscale 
image into binary image . The process steps include applying 
filters to remove noise . 
[ 0089 ] The first step in the image transformation process 
is to apply a bilateral filter to process cycle images of 
sections . The bilateral filter is a technique to smooth images 
while preserving edges . It replaces the intensity of each pixel 
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with a weighted average of intensity values from its neigh 
boring pixels . Each neighbor is weighted by a spatial com 
ponent that penalizes distant pixels and a range component 
that penalizes pixels with a different intensity . The combi 
nation of both components ensures that only nearby similar 
pixels contribute to a final result . Thus , bilateral filter is an 
efficient way to smooth an image while preserving its 
discontinuities or edges . Other filters can be used such as 
median filter and anisotropic diffusion . 
[ 0090 ] The second step in image transformation includes 
applying thresholding to output images from step 1. In one 
implementation , we apply Otsu's method ( Otsu , N. , 1979 , 
“ A threshold selection method from gray - level histograms ” , 
IEEE Transactions on Systems , Man , and Cybernetics , Vol 
ume 9 , Issue 1 ) that uses histogram of intensities and 
searches for a threshold to maximize a weighted sum of 
grayscale variance between pixels assigned to dark and 
bright intensity classes . Otsu's method attempts to maximize 
the between - class variance . The basic idea is that well 
thresholded classes should be distinct with respect to the 
intensity values of their pixels and , conversely , that a thresh 
old giving the best separation between classes in terms of 
their intensity values would be the best threshold . In addi 
tion , Otsu's method has the property that it is based entirely 
on computations performed on the histogram of an image , 
which is an easily obtainable one - dimensional array . For 
further details of Otsu's method , refer to Section 10.3.3 of 
Gonzalez and Woods , “ Digital Image Processing " , 3rd Edi 
tion . 
[ 0091 ] The third step in image transformation is applica 
tion of noise reduction Gaussian blur filter to remove 
speckle - like noise . Noise can contaminate the process cycle 
images with small speckles . Gaussian filtering is a weighted 
average of the intensity of adjacent positions with a weight 
decreasing with the spatial distance to the center position . 
[ 0092 ] The fourth step in image transformation includes 
image morphology operations . The binary output images 
from third step are processed by morphological transforma 
tion to fill holes in the images . A hole may be defined as a 
background region ( represented by Os ) surrounded by a 
connected border of foreground pixels ( represented by 1s ) . 
Two basic image morphology operations are “ erosion ” and 
“ dilation ” . In erosion operation , a kernel slides ( or moves ) 
over the binary image . A pixel ( either 1 or 0 ) in the binary 
image is considered 1 if all the pixels under the kernel are 
1s . Otherwise , it is eroded ( changed to 0 ) . Erosion operation 
is useful in removing isolated is in the binary image . 
However , erosion also shrinks the clusters of 1s by eroding 
the edges . Dilation operation is the opposite of erosion . In 
this operation , when a kernel slides over the binary image , 
the values of all pixels in the binary image area overlapped 
by the kernel are changed to 1 if value of at least one pixel 
under the kernel is 1. If dilation operation is applied to the 
binary image followed by erosion operation , the effect is 
closing of small holes ( represented by Os in the image ) inside 
clusters of 1s . The output from this step is provided as input 
to intensity extractor component 259 which performs the 
fifth step of this image transformation technique . 

images from eight up to seventeen or more active areas . 
Examples of areas in a section image include four slots , four 
corners , four edges between corners and various vertical and 
horizontal lines at the borders of the section and the slots . 
The areas that correspond to known structures that separate 
active areas are then removed from the image . The image 
portions for remaining active areas are processed by the 
intensity extractor 259. Intensity values are extracted and 
averaged for each active area of transformed image and 
corresponding non - transformed image . For example , if 
intensity values are extracted from 17 active areas of trans 
formed image then the intensity extractor also extracts 
intensity values from the same 17 active areas of the 
non - transformed image . Thus , total of 34 features are 
extracted per section image . 
[ 0094 ] In case of binary images , the average intensity of 
an active area can be between 1 and 0. For example , consider 
intensity of a black pixel is O and intensity of a bright ( or 
blank ) pixel is 1. If all pixels in an active area are black , then 
the average intensity of the active area will be 0. Similarly , 
if all pixels in an active area are bright then the intensity of 
that area will be 1. The active areas in healthy images appear 
as blank or bright in the binary images while black pixels 
represent unhealthy images . The average intensities of cor 
responding active areas in grayscale image are also 
extracted . The average intensities of active areas from both 
grayscale image and transformed binary image are given as 
input to the good vs. bad classifier . In one implementation , 
the classification confidence score from the classifier is 
compared with a threshold to classify the image as a healthy 
( or good or successful ) image or an unhealthy ( or bad or 
failed ) image . An example of threshold value is 80 % . A 
higher value of a threshold can result in more images 
classified as unhealthy . 
[ 0095 ] Training Data Generator for Convolutional Neural 
Network ( CNN ) 
[ 0096 ] The third image processing technique can use 
cropping , translation , and reflection to prepare input images 
for training convolutional neural networks ( CNNs ) . The 
section images are rectangular and the CNNs such as ResNet 
( He et al . CVPR 2016 available at << arxiv.org/abs/1512 . 
03385 >> ) and VGG ( Simonyan et al . 2015 available at 
<< arxiv.org/abs/1409.1556 >> ) use square input images of 
size 224x224 pixels . The training data generator for CNN 
275 includes the image cropper 277 , the image translator 
279 , and the image reflector 281 to prepare input images for 
the CNNs . The image translator 279 can also augment the 
labeled input images to increase the size of training data . 
Image Cropper 
[ 0097 ] The image cropper 277 includes logic to crop 
images of sections of the image generating chip to match the 
input image size required by convolutional neural networks 
( CNN ) . In one implementation , high resolution images 
obtained from the genotyping instrument have dimensions 
of 3600x1600 pixels . As described above , the higher reso 
lution images can require more computational resources to 
process therefore , the technology disclosed downsamples 
the images to reduce the size . The size of image can be 
reduced to 1/4 to 1/40 per side from the original image's size 
in pixels , thus resulting in images of sizes ranging from 
964x400 pixels to 90x40 pixels . In one instance , section 
images are downsampled to 1/20 times per side from the 
original image's size of 3600x1600 pixels , resulting in a size 
of 180x80 pixels ( JxK images ) . The downsampled images 

Intensity Extractor 
[ 0093 ] The intensity extractor 259 divides section images 
into active areas or segments by filtering out the structures 
at the boundaries of sections and slots . The intensity extrac 
tor can apply different segmentations to divide section 
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can be provided to an image cropper to prepare the input as 
required by the convolutional neural network ( CNN ) . 
[ 0098 ] Image cropper can crop out , different portions of 
the rectangular section images for preparing the square input 
images for the CNN . For example , a central part of rectan 
gular shaped section images of image generating chip can be 
cropped and placed inside the analysis frame of 224x224 
pixels . If the input image of section is larger than 224x224 
pixels such as 504x224 pixels , the image cropper can crop 
out 224x224 pixels from the image to fill the MxN analysis 
frame . The image cropper can crop out smaller portions than 
224x224 pixels for placing in an MxN analysis frame . 

Image Translator 

a 

[ 0099 ] The image translator 279 includes logic to position 
the labeled input images of sections of image generating 
chip in multiple locations in analysis frames . “ Translation ” 
can be referred to as moving a shape or section image in our 
case , without rotating or flipping . Translation can also be 
referred to as sliding the section image in an analysis frame . 
After translation , the section image looks the same and has 
the same dimensions but is positioned at a different place in 
the analysis frame . The image translator includes logic to 
horizontally , vertically , or diagonally move or slide the 
section images at different position in the analysis frame . 
[ 0100 ] The analysis frames can be larger than the size of 
the labeled input images . In one case , the analysis frame is 
square - shaped having a size 224x224 pixels . The analysis 
frames of other sizes and shapes can be used . The labeled 
input images of sections can be positioned at multiple 
locations in the analysis frame . When the image size is 
180x80 pixels , and the analysis frame is 224x224 pixels 
then image can be translated horizontally and can also be 
translated vertically . In another example , when the image 
size is 224x100 pixels , the image can only be translated 
horizontally in the analysis frame of 224x224 pixels . In 
another example , when the image size is 200x90 pixels , it 
can be translated horizontally and vertically in the analysis 
frame of 224x224 pixels . 
[ 0101 ] The pixels in the analysis frame surrounding the 
labeled input image can be zero - padded . In this case , the 
pixels surrounding the labeled input image are assigned “ O ” 
values for respective intensities . The translation of one input 
labeled image can result in multiple analysis frames con 
taining the input image at different locations in the frame . 
This process can augment the training data thus increasing 
the number of training examples . 

Process Cycle Images 
[ 0103 ] We now present examples of successful and unsuc 
cessful production images of sections on image generating 
chips . FIG . 4 is an illustration 400 of production images of 
24 sections on an image generating chip . The sections are 
arranged in twelve rows and two columns . Each section has 
four slots . The illustration 400 shows section images of a 
successful production cycle . Image generating chips with 
other configurations of sections can also be used such as 
including 48 , 96 or more sections . In the following figures 
we present examples of section images of unsuccessful 
production cycles . The production process is vulnerable to 
both operational and chemical processing errors . The opera 
tional defects can be caused due to mechanical or sample 
handling issues . Chemical processing errors can be caused 
by issues in samples or chemical processing of the samples . 
The technology disclosed attempts to classify bad process 
image cycles occurring due to both operational and chemical 
processing errors . 
[ 0104 ] FIG . 5A shows an example 510 of a section image 
from an unsuccessful production cycle . The image of section 
512 in second column and seventh row of the image gen 
erating chip in FIG . 5A is dark colored in bottom half portion 
and slightly light colored in top portion . The cause of this 
failure is linked to the hybridization process . Therefore , the 
failed image of the section is labeled as “ Hyb ” failure . 
Hybridization failures can also occur due to failures of 
robots that handle samples during sample preparation pro 
cess on image generating chips . The call rate for this section 
is “ 97.545 ” which is below the 98 percent pass threshold . In 
some cases , the call rate for section from genotyping instru 
ments can be above the pass threshold and even then , the 
section image can fail due to hybridization error . 
[ 0105 ] It can be noted that in illustration 510 , the image of 
section 514 at row 11 and column 2 has a dark colored 
region on the right wall . This may also indicate a processing 
issue , however , the overall call rate of this image is above 
the pass threshold and it is not labeled as a failed image . 
There is sufficient redundancy of samples on the section due 
to whic small areas of sections with apparent failure can be 
ignored and may not cause errors in the results . For example , 
in one instance , the scanner reads fluorescence from about 
700K probes on a section with a redundancy of 10. There 
fore , the call rate is based on readout of about 7 million 
probes . We present further examples of hybridization fail 
ures in illustration 515 in FIG . 5B . Four sections on image 
generating chip in broken line boundaries show bad produc 
tion images of sections due to hybridization failure . Note 
that the call rate values for these four sections are above pass 
threshold but images of these sections are labeled as failed 
due to hybridization error . 
[ 0106 ] FIG . 5C presents an illustration 520 of nine section 
images that show unsuccessful processing due to spacer shift 
failure . When samples are prepared on sections on an image 
generating chip , a dark colored marker is placed around the 
sections . The spacer separates samples in each section from 
other samples in neighboring sections . If the marker is not 
placed correctly , it can block part of the image signal . The 
offset error can happen across multiple neighboring sections 
as shown in FIG . 5C . The top portions of nine sections in this 
figure appear as dark colored . The dark portion on top part 
of the sections increases as we move from left to right . Space 
shift issue is an operational error as it is caused by inaccurate 
placement of marker by laboratory technicians during prepa 

Image Reflector 

[ 0102 ] The image reflector 281 includes logic to horizon 
tally and vertically reflect the smaller sized input labeled 
image positioned in the larger sized analysis frame . Reflec 
tion refers to an image of an object or of a section image in 
our case , as seen in a mirror . The smaller sized labeled input 
image can be placed in center of the larger sized analysis 
frame . The image reflector 281 includes logic to reflect the 
section images , horizontally and vertically along the edges 
to fill the surrounding pixels in larger sized analysis frames 
( such as 224x224 pixels ) . The reflection padding can 
increase probability of detecting failed process images as the 
image or portions of the image are copied in multiple 
locations in the analysis frame . 
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ration of samples on image generating chip . FIG . 5D pres 
ents three more examples of failed images of sections due to 
spacer shift failure . A box 525 shows five section images 
with spacer shift failure as top portions of the section images 
are dark colored increasing in width from top right to top 
left . A box 527 shows two section images that indicate failed 
process due to spacer shift issue at the bottom portions of the 
sections . Similarly , a box 529 shows images of two sections 
that failed due to space shift issue . 
[ 0107 ] FIG . 5E shows an example of failed images of 
sections due to unsuccessful processing caused by offset 
failure . In offset failure , images of sections on the image 
generating chip are shifted to one side . For example , in the 
illustration 530 , all section images on the image generating 
chip are shifted towards left side thus the dark colored outer 
border of the image generating chip on the left edge is cutoff 
from the image . Offset failures can be caused by scanning 
errors such as scanner misalignment or misplacement of 
image generating chip on the chip carrier . 
[ 0108 ] FIG . 5F shows examples of failed section images 
due to surface abrasion failure . The surface abrasion is 
caused by scratches on surface of sections in image gener 
ating chip during manufacturing process or during prepara 
tion of samples on sections . The scratches are visible as lines 
on images of the sections as shown in illustration 535. Note 
that despite call rate values are above pass threshold for 
three sections in a broken line box on the left , the images are 
labeled as failed due to surface abrasion failure . 

[ 0109 ] FIG . 5G is an illustration 540 of failed section 
images due to reagent flow failure . Ten section images in a 
box 542 are labeled as failed images due to reagent flow 
failure . The section images failed due to unsuccessful pro 
cess caused by improper reagent flow . During genotyping 
process , reagent is introduced in image generating chip from 
one side . The reagent flows from one end of the image 
generating chip towards the opposite end and completely 
covers all sections . Sometimes , there is an issue in flow of 
the reagent , and it does not propagate evenly to all sections . 
In this case , the reagent may become dry when sufficient 
amount of reagent does not cover a section . Improper 
reagent flow can reduce the strength of emitted signal from 
some sections as the fluorescence dye may not be evenly 
distributed over all sections thus impacting the image qual 
ity . The failed images due to reagent flow failure can appear 
as darker in color compared to section images representing 
successful process cycle . FIG . 5H shows further examples of 
failed section images due to reagent flow failure in an 
illustration 545. The reagent flow failure can impact multiple 
neighboring sections in a region of the image generating 
chip as shown in FIG . 5G and FIG . 5H . 
[ 0110 ] FIG . 51 presents examples of failed images due to 
unknown reasons . The failed section images are labeled as 
“ unhealthy ” . The failed images in unhealthy class of failures 
can be due to mixed or unidentified causes and weak signals . 
The illustration 550 of the images of sections also show an 
example of spacer failure for section on the top left of the 
image generating chip . The image section on the top left 
position ( row 1 and column 2 ) is labeled as spacer failure . 
It can be seen that top portion of the failed section image is 
dark colored . The portion of dark colored region on the top 
increases from right corner of the section image to the left 

Principal Component Analysis - Based Feature Generation 
[ 0111 ] We now present examples of Eigen images , which , 
in the field of facial recognition , are referred to as Eigen 
faces . From tens of thousands of labeled images , a linear 
basis of 40 to 100 or more image components is identified . 
FIG . 6A presents an example of 96 Eigen images obtained 
by applying Principal Component Analysis ( PCA ) . The 96 
Eigen images are selected based on rank ordering of com 
ponents according to a measure of explained variability as 
presented above . FIG . 6B shows top 40 ranked Eigen images 
from the 96 Eigen images in FIG . 6A . In one implementa 
tion , it was observed that 40 components explained most of 
the variability . Additional components selected appeared to 
reflect patterns of noise or natural variability in sample 
processing . 
[ 0112 ] We now describe dimensionality reduction and 
creation of basis of Eigen images using PCA . The first step 
is to reduce the resolution of images of sections and prepare 
the reduced images for input to PCA . FIG . 7A presents an 
illustration 710 showing dimensionality reduction . The sec 
tion images of 3600x1600 pixels resolution are down 
sampled to 1/20 times per side resulting in section images 
with reduced size of 180x80 pixels . The downsampled 
section images are flattened . The resulting flattened section 
images are a one - dimensional array , i.e. , 14,400x1 pixels 
each . 
[ 0113 ] Other dimensionality reductions can be used as 
alternatives to 1/20 size on each edge . The principle is that it 
takes much less information , much less pixel density , to 
evaluate the overall health of a flow cell than to call 
individual clusters or balls in the flow cell . Thus , reductions 
in a range of 1/2 to 1/50 or in a range of 1/4 to 1/40 could be used , 
with more extreme reductions in resolution expected as the 
initial resolution of a section image increases . It is desirable 
to select a resolution reduction that fits a captured section 
into the input aperture of the deep learning framework , 
especially when transfer learning can be applied to leverage 
pre - training of the deep learning framework . The downsam 
pling to 180x80 pixel , to 1/20 , with reflections both horizon 
tally and vertically proved to be a good choice with an input 
aperture of 224x224 pixels . Other reductions will be evident 
for different section images and different deep learning input 
apertures . 
[ 0114 ] In alternative implementations , PCA is applied to 
downsampled images , as described in a prior application . 
The flattened section images are standardized as explained 
above , thus resulting in standardized flattened rescaled sec 
tion images as shown in an illustration 740 in FIG . 7B which 
are given as input to PCA . The PCA thus produces 14,400 
principal components or Eigen images . Each input image is 
a vector in 14,400 - dimensional space . We then use explained 
variance to rank order principal components or Eigen 
images and create a basis , for instance a basis of 40 to 100 
components . The components form a basis of a linear space . 

Image Segmentation - Based Feature Generation 
[ 0115 ] The second image processing technique to generate 
features from images of section involves thresholding of 
image areas or segments . FIG . 8A shows an example 810 of 
segmentation - based feature generation applied to a section 
image . The illustration 812 in the example 810 is a produc 
tion image of a section of an image generating chip . We 
apply image transformation to transform this grayscale corner . 
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sisting of samples belonging to three classes ( squares , 
circles , and triangles ) as shown in the left graph 931. A first 
hyperplane 916 as shown in the top right graph 915 shows 
a hyperplane determination for the square class as the 
ground truth . The hyperplane 916 partitions the data points 
in the square class from the rest of the data points ( circles 
and triangles ) . Similarly , graphs 936 and 955 respectively 
partition data points in circle and triangle classes from other 
classes in the data via hyperplanes 937 and 956 respectively . 
The position of the hyperplane is determined by the weight 
vector . The training algorithm attempts to maximize the 
margin of the hyperplane from the ground truth class for 
generalization , however it may result in incorrect classifi 
cation of one or more data points . We apply OvR classifi 
cation to distinguish section images from process cycles 
belonging to a good class from images belonging to multiple 
bad ( or failure ) classes . 

Random Forest Classifiers 

production image 812 to generate a counterpart binary 
image 814. In one implementation , some , or all of the five 
steps presented above with reference to image transformer 
257 can be performed to transform the grayscale image to a 
binary image . The black pixels in binary image 814 indicate 
unhealthy or bad image pixels while bright pixels indicate 
healthy or good image pixels . 
[ 0116 ] In FIG . 8A , an illustration 816 on the right is an 
example schematic of a section indicating various areas of 
the section and borders or lines around these areas . The areas 
from which intensity of the fluorescent signal is recorded are 
also referred to as active areas or regions of interest . For 
example , the section schematic 816 indicates active areas of 
four slots that run parallel to each other from top to bottom . 
The areas of the section image that are not active areas are 
filtered out of the image . For examples , the boundary areas 
of slots that are separated from each other by vertical lines 
that indicate boundaries or borders of slots . Similarly , the 
borders on the four sides of the section image can be filtered 
out . The segmentation technique can divide the section 
images into 4 to 20 or more segments or active areas . The 
thresholding determines how much of an active area is 
producing a desired signal strength . 
[ 0117 ] The number of active areas determine the number 
of features generated per image . For example , if the section 
image is segmented into eight active areas , then image 
intensity from eight active areas of the transformed image 
and the image intensity values from the same eight active 
areas of the original section image before transformation are 
given as input to the classifier . Thus , in this example , a total 
of 16 features per section image will be given to the 
classifier . An average intensity of the signal strength from an 
active area can be used as input to a classifier . For example , 
if the section image is segmented into eight active areas then 
average intensity of these eight active areas is calculated for 
both grayscale image and binary image . These sixteen 
intensity values are given as input to the classifier to classify 
the section image as good vs bad . Other segmentation 
schemes can be used which divide the image into fewer or 
more segments such as 4 , 12 , 17 or more segments per 
image . If given as input to a random forest classifier , a subset 
of features is randomly selected for each decision tree . The 
decision tree votes the image as healthy ( or successful ) or 
unhealthy ( or failed ) . The majority votes in random forest 
are used to classify the image . In one implementation , the 
value of number of trees in the random forest classifier is in 
the range of 200 to 500 and the value of the depth of the 
model is in the range of 5 to 40. The patterns of failures 
among areas and sections of an image generating chip can be 
further evaluated for root cause classification . 
[ 0118 ] FIG . 8B presents an illustration 820 of three pairs 
of section images 822 , 824 , and 826. The left image in each 
pair is the pre - transformed grayscale section image and the 
right image in each pair is processed binary image after 
applying the image transformations as described with ref 
erence to FIG . 2. The first image pair 822 is a production 
image of a successful genotyping process . The second image 
pair 824 is a production image of failed production image 
due to hybridization ( or hyb ) failure . The third image pair 
826 is of a failed image due to surface abrasion issue . 
One Vs. The Rest ( OvR ) Classification 
[ 0119 ] FIG . 9 presents graphical illustrations 900 of run 
ning one - vs - the - rest classifier . The graphs show examples of 
running one - vs - the - rest ( OvR ) classifier on a data set con 

[ 0120 ] The technology disclosed can apply a variety of 
classifiers to distinguish images from good or healthy 
images from bad or unhealthy images belonging to multiple 
failure classes . Classifiers applied includes random forest , 
K - nearest neighbors , multinomial logistic regression , and 
support vector machines . We present the implementation of 
the technology disclosed using random forest classifier as an 
example . 
[ 0121 ] Random forest classifier ( also referred to as ran 
dom decision forest ) is an ensemble machine learning tech 
nique . Ensembled techniques or algorithms combine more 
than one technique of the same or different kind for classi 
fying objects . The random forest classifier consists of mul 
tiple decision trees that operate as an ensemble . Each 
individual decision tree in random forest acts as base clas 
sifier and outputs a class prediction . The class with the most 
votes becomes the random forest model's prediction . The 
fundamental concept behind random forests is that a large 
number of relatively uncorrelated models ( decision trees ) 
operating as a committee will outperform any of the indi 
vidual constituent models . 
[ 0122 ] The technology disclosed applies the random forest 
classifiers in a two - staged classification process . A first 
trained random forest classifier performs the task of sepa 
rating successful production images from unsuccessful pro 
duction images . A second trained random forest classifier 
performs the task of root cause analysis of unsuccessful 
production images by predicting the failure class of an 
unsuccessful image . This two - stage classification was 
selected due to dominance of successful production runs but 
a one - stage classification can also be used . Another reason 
for selecting the two - stage approach is that it allows us to 
control the sensitivity threshold for classifying an image as 
a healthy or successful production image versus 
unhealthy or a failed production image . We can increase the 
threshold in first stage classification thus causing the clas 
sifier to classify more production images as failed images . 
These failed images are then processed by the second stage 
classifier for root cause analysis by identifying the failure 
class . 
[ 0123 ] Training of Random Forest Classifiers 
[ 0124 ] FIG . 10A describes training of two random forest 
classifiers as shown in an illustration 1000. The training data 
comprises of input features for the labeled process cycle 
images stored in the training database 138 as shown in FIG . 

an 

a 
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1. In one example training of the classifiers , we used 20,000 
labeled production images of sections . The labeled images 
include both good images from successful production cycles 
and failed images from unsuccessful production cycles . The 
size of the training database 138 will grow as more labeled 
production images are received from laboratories perform 
ing the genotyping process . 
[ 0125 ] In one implementation , we used 96 weights of 
components of labeled production images to train random 
forest classifiers . A random forest classifier with 200 deci 
sion trees and a depth of 20 worked well . It is understood 
that random forest classifiers with a range of 200 to 500 
decision trees and a range of depth from 10 to 40 is expected 
to provide good results for this implementation . We tuned 
the hyperparameters using randomized search cross - valida 
tion . The search range for depth was from 5 to 150 and 
search range for number of trees was from 100 to 500 . 
Increasing the number of trees can increase the performance 
of the model however , it can also increase the time required 
for training . A training database 1001 including features for 
20,000 production cycle images is used to train the binary 
classifier which is labeled as Good vs. Bad classifier 151 . 
The same training database can be used to training root 
cause classifier 171 to predict the failure class . The root 
cause classifier 171 is trained on training database 1021 
consisting of only the bad or failed production images as 
shown in FIG . 10A . 
[ 0126 ] Decision trees are prone to overfitting . To over 
come this issue , bagging technique is used to train the 
decision trees in random forest . Bagging is a combination of 
bootstrap and aggregation techniques . In bootstrap , during 
training , we take a sample of rows from our training 
database and use it to train each decision tree in the random 
forest . For example , a subset of features for the selected 
rows can be used in training of decision tree 1. Therefore , the 
training data for decision tree 1 can be referred to as row 
sample 1 with column sample 1 or RS1 + CS1 . The columns 
or features can be selected randomly . The decision tree 2 and 
subsequent decision trees in the random forest are trained in 
a similar manner by using a subset of the training data . Note 
that the training data for decision trees is generated with 
replacement i.e. , same row data can be used in training of 
multiple decision trees . 
[ 0127 ] The second part of bagging technique is the aggre 
gation part which is applied during production . Each deci 
sion tree outputs a classification for each class . In case of 
binary classification , it can be 1 or 0. The output of the 
random forest is the aggregation of outputs of decision trees 
in the random forest with a majority vote selected as the 
output of the random forest . By using votes from multiple 
decision trees , a random forest reduces high variance in 
results of decision trees , thus resulting in good prediction 
results . By using row and column sampling to train indi 
vidual decision trees , each decision tree becomes an expert 
with respect to training records with selected features . 
[ 0128 ] During training , the output of the random forest is 
compared with ground truth labels and a prediction error is 
calculated . During backward propagation , the weights of the 
96 components ( or the Eigen images ) are adjusted so that the 
prediction error is reduced . The number of components or 
Eigen images depends on the number of components 
selected from output of principal component analysis ( PCA ) 
using the explained variance measure . During binary clas 
sification , the good vs. bad classifier uses the image descrip 

tion features from the training data and applies one - vs - the 
rest ( OvR ) classification of the good class ( or healthy 
labeled images ) versus the multiple bad classes ( images 
labeled with one of the six failure classes ) . The parameters 
( such as weights of components ) of the trained random 
forest classifier are stored for use in good vs. bad classifi 
cation of production cycle images during inference . 
[ 0129 ] The training of the root cause classifier 171 is 
performed in a similar manner . The training database 1021 
comprises of features from labeled process cycle images 
from bad process cycles belonging to multiple failure 
classes . The random forest classifier 171 is trained using the 
image description features for one - vs - the - rest ( OvR ) classi 
fication of each failure class verses the rest of the labeled 
training examples . 
[ 0130 ] Classification Using Random Forest Classifiers 
[ 0131 ] We now describe the classification of production 
images using the trained classifiers 151 and 171. FIG . 10B 
presents the two - stage classification 1080 of production 
images using the good vs. the bad classifier 151 in a first 
stage and a root cause classifier 171 in a second stage . The 
process is presented using a sequence of process flow steps 
labeled from 1 to 9. The process starts at a step 1 by 
accessing a trained random forest classifier labeled as good 
vs. bad classifier 151. Input features of production images 
stored in a database 1030 are provided as input to the 
classifier 151. The classifier distinguishes good images 
belonging to successful process cycle from bad images 
belonging failed process cycles . The bad images belong to 
multiple failure classes for example , each image can belong 
to one of the six failure classes as described above . The 
trained classifier accesses a basis of Eigen images with 
which to analyze a production image . The trained classifier 
creates image description features for the production image 
based on linear combination of Eigen images . The weights 
of the Eigen images are learned during the training of the 
classifier as described above . 
[ 0132 ] As we apply the one - versus - the - rest classification , 
all decision trees in the random forest classifier predict 
output for each class , i.e. , whether the image belongs to one 
of the seven classes ( one good class and six failure classes ) . 
Therefore , each decision tree in the random forest will 
output seven probability values , i.e. , one value per class . The 
results from the decision trees are aggregated and majority 
vote is used to predict the image as good or bad . For 
example , if more than 50 % of the decision trees in the 
random forest classify the image as good , the image is 
classified as a good image belonging to a successful pro 
duction cycle . The sensitivity of the classifier can be 
adjusted for example , by setting the threshold higher will 
result in more images classified as bad . In process step 2 , the 
output from the classifier 151 is checked . If the image is 
classified as a good image ( step 3 ) , the process ends ( step 4 ) . 
Otherwise , if the image is classified as a bad image indicat 
ing a failed process cycle ( step 5 ) , the system invokes root 
cause classifier 171 ( step 6 ) . 
[ 0133 ] The root cause classifier is applied in the second 
stage of the two - stage process to determine the class of 
failure of the bad image . The process continues in the second 
stage by accessing the production image input feature for the 
bad image ( step 7 ) and providing the input features to the 
trained root cause classifier 171 ( step 8 ) . Each decision tree 
in the root cause classifier 171 votes for the input image 
features by applying the one - vs - the - rest classification . In 

? 
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iteratively choosing a function that points in the negative 
gradient direction . For example , the model can be trained to 
minimize the mean squared error over the training data set . 
Gradient boosted model required more training time as 
compared to other classifiers . The technology disclosed can 
include training Naïve Bayes classifier that assume that the 
value of a particular feature is independent of the value of 
any other feature . A Naïve Bayes classifier considers each of 
the features to contribute independently to the probability of 
an example belonging to a class . Naïve Bayes classifier can 
be trained to classify images in a good class vs. multiple bad 
classes . 

2 

Examples of Feature Engineering for Deep Learning - Based 
Classification 

this case , the classification determines whether the image 
belongs to one of the six failure class versus the rest of the 
five failure classes . Each decision tree provides classifica 
tion for each class . Majority votes from decision trees 
determine the failure class of the image ( step 9 ) . 
[ 0134 ] We can use other classifiers to classify good section 
images vs. bad section images and perform root cause 
analysis . For example , the technology disclosed can apply 
K - nearest neighbors ( k - NN or KNN ) algorithm to classify 
section images . The k - NN algorithm assumes similar 
examples ( or section images in our implementation ) exist in 
close proximity . The k - NN algorithm captures the idea of 
similarity ( also referred to as proximity , or closeness ) by 
calculating the distance between data points or images . A 
straight - line distance ( or Euclidean distance ) is commonly 
used for this purpose . In k - NN classification , the output is a 
class membership , for example , a good image class or a bad 
image class . An image is classified by a plurality of votes of 
its neighbors , with the object being assigned to the class 
most common among its k nearest neighbors . The value of 
k is a positive integer . 
[ 0135 ] To select the right value of k for our data , we run 
the k - NN algorithm several times with different values of k 
and choose the value of k that reduces the number of errors 
we encounter while maintaining the algorithm's ability to 
accurately make predictions when it is given data that it has 
not seen before . Let us assume , we set the value of k to 1 . 
This can result in incorrect predictions . Consider we have 
two clusters of data points : good images and bad images . If 
we have a query example that is surrounded by many good 
images data points , but it is near to one bad image data point 
that is also in the cluster of good images data points . With 
k = 1 , the k - NN incorrectly predicts that the query example is 
bad image . As we increase the value of k , the prediction of 
the k - NN algorithm become more stable due to majority 
voting in classification ) and averaging ( in regression ) . 
Thus , the algorithm is more likely to make more accurate 
predictions , up to a certain value of k . As the value of k is 
increased , we start observing increasing number of errors . 
The value of k in the range of 6 to 50 is expected to work . 
[ 0136 ] Examples of other classifiers that can be trained 
and applied by the technology disclosed include multino 
mial logistic regression , support vector machines ( SVM ) , 
gradient boosted trees , Naïve Bayes , etc. We evaluated the 
performance of classifiers using three criteria : training time , 
accuracy and interpretability of results . Random forest clas 
sifier performed better than other classifiers . We briefly 
present other classifiers in the following text . 
[ 0137 ] Support vector machines classifier also performed 
equally well as random forest classifier . An SVM classifier 
positions a hyperplane between feature vector for the good 
class vs feature vectors for the multiple bad classes . The 
technology disclosed can include training a multinomial 
logistic regression . The multinomial regression model can 
be trained to predict probabilities of different possible out 
comes ( multiclass classification ) . The model is used when 
the output is categorical . Therefore , the model can be trained 
to predict whether the image belongs to a good class or one 
of the multiple bad classes . The performance of the logistic 
regression classifier was less than the random forest and 
SVM classifiers . The technology disclosed can include train 
ing a gradient boosted model which is an ensemble of 
prediction models such as decision trees . The model 
attempts to optimize a cost function over function space by 

> 
a 

[ 0138 ] We present examples of feature engineering of 
images for input to convolutional neural networks ( CNNs ) . 
The feature engineering techniques shown in FIG . 11A such 
as cropping , zero - padding and reflection operations are used 
to generate analysis frames 1105 , 1107 , and 1109 that have 
a size of MxN pixels . The analysis frame is sized to match 
the input image size used by a particular convolutional 
neural network . In one instance , the size of analysis frame is 
224x224 pixels which matches the size of input images 
required by , ResNet - 18 and VGG - 16 models . The dimen 
sions used in this example are 3600x1600 pixels for a 
section image . The example illustrates how the section 
image of 3600x1600 pixels is adapted to a square frame of 
size 224x224 pixels for input to the convolutional neural 
network ( CNN ) . The first step in this process is to down 
sample the section image of 3600x1600 pixels by 1/20 on 
each side to get a reduced sized image of 180x80 pixels . The 
second step is to place the 180x80 pixels image into a frame 
of 224x224 pixels . Then the placed image is reflected 
horizontally to fill the 224x224 pixel square frame on the left 
and right side of the placed image of 180x80 pixels . The 
180x80 pixels image is then reflected vertically to fill the top 
and bottom portion of the 224x224 square frame . 
[ 0139 ] FIG . 11A includes an illustration 1100 showing 
cropping , zero - padding , and reflection operations on section 
images . An example section image 1103 is shown . The 
section image 1103 is rectangular in shape . In cropping , a 
center portion or any other portion of the section image is 
cropped . FIG . 11A , illustrates a cropped portion from the 
section image 1103 , placed in the analysis frame 1105. The 
cropped portion of the section image can be of square 
dimensions , i.e. , the cropped portion has a same number of 
pixels along the height and the width of the cropped portion . 
For example , the cropped image placed in the analysis frame 
1105 can be 80x80 pixels cropped portion of the JxK image 
1103. The cropped portion can be positioned in the center of 
the analysis frame . In other implementations , the cropped 
portion can be positioned closer to one side of the analysis 
frame . In another implementation , the cropped portion can 
be resampled to make the size of the cropped section equal 
to the size of the analysis frame e.g. , 224x224 pixels . This 
will result in the cropped section completely filling the 
analysis frame . 
[ 0140 ] FIG . 11A shows zero - padding operation after the 
section image 1103 is placed in the analysis frame 1107. The 
section image can be positioned in the center of the analysis 
frame as shown in illustration 1107. The section image can 
also be positioned in any other location in the analysis 
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model can have five categories corresponding to the five 
defect categories . The model can have an additional cat 
egory to classify images with unknown failure types not 
classified in existing known failure categories . 
[ 0147 ] Step 4 : The fourth step is to train the target model 
on a target dataset . In our case , the training dataset includes 
around 75 thousand labeled section images . We train the 
output layer from scratch , while the parameters of all 
remaining layers are fine - tuned based on the parameters of 
the source model . 

Network Architecture of VGG - 16 Model 

frame . The surrounding pixels in the analysis frame can be 
given “ O ” image intensity values . 
[ 0141 ] FIG . 11A also shows applying reflection to fill the 
pixels in analysis frame 1109. The section image can be 
positioned in the center of analysis frame 1107 , then 
reflected horizontally to fill the analysis frame along the left 
and right edges of the analysis frame . It can also be reflected 
vertically along the top and bottom edges fill the top and 
bottom portions of the analysis frame 1109. Evaluation of 
various strategies , detailed below , revealed that reflection to 
fill a frame worked well in both training and production , 
without requiring any change in the input aperture of the 
image processing frameworks evaluated . Surprisingly , 
reflection significantly outperformed zero padding . 
[ 0142 ] FIG . 11B illustrates augmentation of training data 
by applying translation to the training example section 
image 1103. Applying translation for data augmentation 
includes placing the section image at multiple positions in 
the analysis frame . For example , the section image is 
positioned in the center of the analysis frame as shown in the 
analysis frame 1111. The translation of the section image 
horizontally and vertically can produce multiple analysis 
frames as shown in illustrations 1113 , 1115 , 1117 , etc. The 
surrounding area can initially be zero - padded , depicted by a 
dark color ( or black ) as shown in FIG . 11B . However , the 
surrounding area may not always be black . The technology 
disclosed can apply horizontal and vertical reflection pad 
ding , as shown in FIG . 11A , to fill the surrounding area with 
reflected section image . 

. 

Transfer Learning Using Fine - Tuning 
[ 0143 ] In many real - world applications , an entire convo 
lutional neural network ( CNN ) is not trained from scratch 
with random initialization . This is because in most cases 
training datasets are small . It is common to pretrain a CNN 
on a large dataset such as ImageNet , which contains around 
14 million images with 1000 categories ( available at 
<< image-net.org >> ) , and then use the pretrained CNN as an 
initialization or a fixed feature extractor for the task of 
interest . This process is known as transfer learning to 
migrate the knowledge learned from the source dataset to a 
target dataset . A commonly used transfer learning technique 
is referred to as fine - tuning . FIG . 12A , reproduced from 
<< d21.ai/chapter_computer-vision/fine-tuning.html >> , 
illustrates fine - tuning ( 1200 ) . There are four steps to fine 
tune a deep learning model . 
[ 0144 ] Step 1 : Pre - train a neural network model , i.e. , the 
source model , on a source dataset ( e.g. , the ImageNet 
dataset ) . 
[ 0145 ] Step 2 : The second step is to create a new neural 
network model , i.e. , the target model . This replicates all 
model designs and their parameters on the source model , 
except the output layer . We assume that these model param 
eters contain the knowledge learned from the source dataset 
and this knowledge will be equally applicable to the target 
dataset . We also assume that the output layer of the source 
model is closely related to the labels of the source dataset 
and is therefore , not used in the target model . 
[ 0146 ] Step 3 : The third step is to add an output layer to 
the target model whose output size is the number of target 
data set categories , and randomly initialize the model param 
eters of this layer . Therefore , for the detection task , the 
output layer of our model can have two categories ( normal 
and failed ) . For the classification task , the output layer of our 

[ 0148 ] The VGG architecture ( Simonyan et al . 2015 avail 
able at << arxiv.org/abs/1409.1556 >> ) has been widely used 
in computer vision in recent years . It includes stacked 
convolutional and max pooling layers . We have used the 
smaller and hence faster , 16 - layer architecture known as 
VGG - 16 . The architecture ( 1210 ) is presented in FIG . 12B . 
The model consists of five convolutional layers conv1 
( 1220 ) , conv2 ( 1222 ) , conv3 ( 1224 ) , conv4 ( 1226 ) and 
conv5 ( 1228 ) . One way to analyze the output of the convo 
lution is through a fully connected ( FC ) network . Therefore , 
the outputs of the convolution layers are given to fully 
connected ( FC ) layers . There are three fully connected 
layers , fch ( 1240 ) , fc7 ( 1242 ) , and fc8 ( 1244 ) . The model 
uses “ max pooling ” in between convolutional layers and 
between the last convolutional layer and fully connected 
layer . There are five “ max pooling ” layers 1230 , 1232 , 1234 , 
1236 , and 1238. We extract features from " conv5 ” layer 
( 1228 ) which has a stride of 16 pixels . 
[ 0149 ] The model takes as input , image sizes of 224x224 
pixels . The input image can be an RGB image . The image 
is passed through a stack of convolutional ( conv ) layers , 
where the filters are used with a very small receptive field : 
3x3 ( to capture the notion of left / right , up / down , center ) . In 
one configuration , it utilizes 1x1 convolution filters , which 
can be seen as a linear transformation of the input channels 
( followed by non - linearity ) . The convolution stride is fixed 
to 1 pixel ; the spatial padding of convolution layer input is 
such that the spatial resolution is preserved after convolu 
tion , i.e. , the padding is 1 - pixel for 3x3 convolutional layers . 
[ 0150 ] Spatial pooling is carried out by five “ max pooling ” 
layers 1230 , 1232 , 1234 , 1236 , and 1238 as shown in FIG . 
12B , which follow some of the convolutional layers . The 
output of the convolution is also referred to as feature maps . 
This output is given as input to a max pooling layer . The goal 
of a pooling layer is to reduce the dimensionality of feature 
maps . For this reason , it is also called “ downsampling ” . The 
factor to which the downsampling will be done is called 
“ stride ” or “ downsampling factor ” . The pooling stride is 
denoted by “ s ” . In one type of pooling , called “ max - pool ” , 
the maximum value is selected for each stride . For example , 
consider max - pooling with s = 2 is applied to a 12 - dimen 
sional vector x = [ 1 , 10 , 8 , 2 , 3 , 6 , 7 , 0 , 5 , 4 , 9 , 2 ] . Max 
pooling vector x with stride s = 2 means we select the 
maximum value out of every two values starting from the 
index 0 , resulting in the vector [ 10 , 8 , 6 , 7 , 5 , 9 ] . Therefore , 
max - pooling vector x with stride s = 2 results in a 6 - dimen 
sional vector . In the example , VGG - 16 architecture , max 
pooling is performed over a 2x2 pixels window , with stride 
2 . 
[ 0151 ] FIG . 12B illustrates that image size is reduced after 
passing through each of the five convolutional layers and 
respective max pooling layers in the VGG model . The input 
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Performance Comparison Feature Engineering and Deep 
Learning Models 
[ 0156 ] We compared performance of two models ResNet 
18 and VGG - 16 using the augmented input data generated 
by applying feature engineering techniques presented above . 
The illustration 1300 in FIG . 13 presents the results of 
performance comparison using macro F1 scores . Macro F1 
performance scores can be considered to reflect a combina 
tion of precision and recall values . For example , F1 score 
can combine precision ( p ) and recall ( r ) values with an equal 
weight as shown in Equation ( 1 ) below . Macro F1 score can 
be calculated as average of F1 scores for all failure catego 
ries . 

a 

image has dimensions of 224x224 pixels . The image size is 
reduced to 112x112 pixels after passing through the first 
convolutional layer labeled as conv1 ( 1220 ) and the max 
pooling layer ( 1230 ) . The image size is reduced to 56x56 
pixels after passing through the second convolutional layer 
labeled as conv2 ( 1222 ) and the max pooling layer ( 1232 ) . 
The third convolutional layer labeled as conv 3 ( 1224 ) and 
the max pooling layer ( 1234 ) reduce the image size to 28x28 
pixels . The fourth convolutional layer labeled as conv 4 
( 1226 ) and the max pooling layer ( 1236 ) reduce the image 
size to 14x14 pixels . Finally , fifth convolutional layer 
labeled as conv 5 ( 1228 ) and the max pooling layer ( 1238 ) 
reduce the image size to 7x7 pixels . 
[ 0152 ] Three Fully - Connected ( FC ) layers 1240 , 1242 , 
and 1244 follow a stack of convolutional layers . The first 
two FC layers 1240 and 1242 have 4096 channels each , the 
third FC layer 1244 performs 1000 - way classification and 
thus contains 1000 channels ( one for each class ) . The final 
layer is the soft - max layer . The depth of convolutional layers 
can vary in different architectures of the VGG model . The 
configuration of the fully connected layers can be same in 
different architectures of the VGG model . 
[ 0153 ] FIG . 12C illustrates the VGG - 16 architecture 1270 
applied by the technology disclosed for detection task . The 
model architecture illustrates parameter values for the five 
convolutional layers conv1 through conv5 and three fully 
connected layers fc 6 to fc 8. The output from the final FC 
layer 1244 produces two outputs classifying the section 
image as normal or failed . The labels in FIG . 12C corre 
spond to respective elements in the architecture diagram in 
FIG . 12B . 

2rp ( 1 ) Fi ( r , p ) = 
r + P 

Network Architecture of RESNET - 18 Model 

[ 0154 ] The ResNet architecture ( He et al . CVPR 2016 , 
available at << arxiv.org/abs/1512.03385 >> ) was designed to 
avoid problems with very deep neural networks . Most 
predominately , the use of residual connections helps to 
overcome the vanishing gradient problem . We used ResNet 
18 architecture which has 18 trainable layers . FIGS . 12D 
and 12E illustrate the example ResNet - 18 architecture 1280 . 
The architecture of the ResNet - 18 is organized in four layers 
1260 , 1262 as shown in FIG . 12D ) and 1264 , 1268 as shown 
in FIG . 12E . Each layer comprises two blocks labeled as “ O ” 
and “ 1 ” . Each block comprises two convolutional layers 
labeled as “ convl ” and “ conv2 " . There is one convolutional 
layer 1259 before the layer 1 block ( 1260 ) . Therefore , there 
are a total of 17 convolutional layers separated by batch 
normalization and ReLU . One Fully - Connected ( FC ) layer 
( 1270 ) at the end produces two outputs . This architecture is 
used for detection task in which the network classifies the 
section images into normal ( or good ) and failed ( or bad ) 
images . 
[ 0155 ] The training of deep learning models with tens of 
convolutional layers is challenging as the distribution of 
inputs to layers deep in the network may change after each 
mini batch when weights are updated . This reduces the 
convergence speed of the model . Batch normalization ( Ioffe 
and Szegedy 2015 , available at << arxiv.org/abs/1502 . 
03167 >> ) technique can overcome this problem . Batch 
normalization standardizes the inputs to a layer for each 
mini batch and reduces the number of epochs required to 
train the deep learning model . 

[ 0157 ] Referring back to results in FIG . 13 , the top two 
bars 1305 and 1310 , respectively present the scores for 
VGG - 16 and ResNet - 18 models . Both models produced 
same macro F1 ( or Fi ) performance scores of 96.2 when 
trained with the fine - tuning approach to transfer learning . 
Both VGG - 16 and ResNet - 18 models were trained on whole 
section images of the image generating chip . Reflection 
padding was used to fill the larger sized analysis frames as 
described above . Training data is augmented by making 
copies of images . The system can augment the training data 
by making multiple copies of labeled images in one class 
( such as one failure class ) to balance the dataset when 
images belonging to this class are fewer as compared to 
images belonging to one or more other classes . Alterna 
tively , an image copy can be used multiple times during 
training to balance the training data . 
[ 0158 ] The graph in FIG . 13 also illustrates performance 
of ResNet - 18 model with different feature engineering tech 
niques the third to fifth bars of the performance comparison 
graph . The third bar 1315 illustrates that a score of 77.2 is 
achieved when ResNet - 18 model is trained using only 
cropping technique for feature engineering . The results are 
not good when only cropping is used for training data 
generation because many defects do not occur in central part 
of section images . Therefore , such defects can be missed by 
the model during training . The fourth bar 1320 shows that 
the performance score is 92.3 when ResNet - 18 model is 
trained with training data generated using zero padding is 
used to fill areas in analysis frames surrounding section 
images . Zero - padding does not perform well because of the 
unnatural rk colored ) region in analysis frame surround 
ing the position of section image . The fifth bar from the top 
labeled 1325 shows that the performance score is 94.9 when 
ResNet - 18 model is trained using training data augmented 
by making copies of the labeled images . In this case trans 
lation is not used to create additional training data variations . 
[ 0159 ] The bar 1335 at the bottom of graph 1300 presents 
the performance for the base model . The base model is 
ResNet - 18 CNN which is used as a feature extractor with no 
finetuning . Feature engineering technique such as reflection 
padding is not used . Data augmentation is also not used . The 
score for the base model is 74.3 . 
[ 0160 ] FIG . 14 presents breakdown of performance scores 
by failure category of the best performing model disclosed . 
The best model achieved an overall macro F1 score of 97 % 
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random forest model ( IBEX ) on the same split of the dataset . 
The results show that , in both tasks of anomaly detection 
( separating good vs. bad images ) and classification ( identi 
fying root cause of bad images ) , the deepIBEX performs 
better than IBEX , measured by the macro F1 score and 
accuracy . 

and accuracy of 96 % . The table 1401 in FIG . 14 presents F1 
scores for different failure categories , examples of which are 
presented above in FIGS . 5A - 51 . 
[ 0161 ] A confusion matrix 1420 illustrates the perfor 
mance of the model in terms of predicted labels vs. true 
labels for five failure categories . Most of the defect catego 
ries are predicted correctly as indicated by values on the 
diagonal ( labeled 1425 ) . A vertical bar on the right indicates 
the number of samples with different failure categories . The 
number of samples with a particular type of failure can be 
calculated by summing the numbers in a row for that failure 
type ( labeled 1430 ) . For example , the number of samples 
containing offset and spacer type failures are 38 and 26 
respectively . The correct predictions for a failure category 
can be determined by looking at the values in the diagonal . 
For example , the model correctly predicted 36 samples with 
offset failures and 24 samples with space shift failures . 
Similarly , out of 129 samples with hybridization or “ hyb ” 
failures , 123 were predicted correctly . The model predicted 
163 samples with reagent flow failures correctly out of a 
total of 170 samples with reagent flow failure . The highest 
number of samples contained surface abrasion failures . Out 
of a total of 437 samples with abrasion failures , a total of 428 
samples were predicted correctly . 

Methodology 
[ 0166 ] The dataset of section images is split into the 
training , validation , and test sets , with the ratios of samples : 
70 % , 15 % , and 15 % . For the two models ( deepIBEX and 
IBEX ) compared here , we used the same split of dataset for 
tuning parameters , training , and evaluation . We tuned the 
model hyperparameters on the training and validation sets , 
using random grid search . We evaluated the model perfor 
mance on the test set finally . 
Parameters Tested 

[ 0167 ] Ten sets of hyperparameters were examined for 
each model through random grid search . In IBEX , the major 
hyperparameters we tuned are the final dimension of PCA 
and the depth of trees in the random forest . In deepIBEX , we 
tuned the learning rate , batch size , momentum . 

Macro F1 Score and Accuracy Measure 
[ 0168 ] The deepIBEX model performed better than the 
IBEX model , as indicated by Macro F1 scores and accuracy . 
F1 score of each category can be defined as the harmonic 
mean of the recall and precision of that category . F1 score 
can also be calculated using equal weights for precision and 
recall as shown in Equation ( 1 ) above . Macro F1 score can 
be calculated as the average of F1 scores of all failure 
categories . Macro F1 score and accuracy measure the per 
formance of model on the test set is presented in the table 
below ( Table 1 ) . A higher macro F1 score , or higher accu 
racy means better performance of the model on the test data . 
Accuracy is defined as the proportion of correctly labeled 
samples among all the test samples . For both detection and 
classification , deepIBEX outperformed IBEX . 

Misclassified Samples 
[ 0162 ] FIG . 15 presents an analysis of six images , from 
the 26 misclassifications in the confusion matrix presented 
in FIG . 14. For each section image , the manually annotated 
failure label is listed in the top row and the predicted label 
from the model is listed in the bottom row . Some images 
were misclassified by the deep learning model and others 
were misclassified by the humans who labeled the training 
set . 
[ 0163 ] Four sample images from the left 1503 , 1505 , 
1507 , and 1509 have multiple defects belonging to different 
failure categories . The manual annotation represents only 
one of the multiple defects . For example , the first image on 
the left ( labeled 1503 ) is labeled as having surface abrasion 
by a human annotator . The surface abrasion is present in the 
top left portion of the image as indicated in the bounding 
box . The model predicted the image as having hybridization 
or hyb failure . It can be seen that the image has hyb failure 
on two locations , in a top right portion of the image and near 
the bottom of the image as pointed by the arrows . 
[ 0164 ] The last two images 1511 and 1513 were incor 
rectly labeled by the human annotator and the deep learning 
model correctly predicted these images . For example , the 
fifth image from the left ( labeled 1511 ) is labeled as having 
spacer shift failure . However , the model predicted the image 
as having surface abrasion failure . The human annotator 
may have incorrectly identified the failure category due to 
close positioning of the dark portion of the image to the 
bottom edge of the image . Similarly , the sixth image from 
the left ( labeled 1513 ) is labeled as having hybridization or 
hyb failure by the human annotator . The model predicted the 
failure category as reagent flow failure which is the correct 
failure category for the image . Thus , performance of the 
machine learning is even better than indicated by the F1 

TABLE 1 

Comparison of Deep IBEX and IBEX Models 

Macro F1 
Score ( % ) 

Accuracy 
( % ) Task Model Parameters 

Detection 
Detection 

deepIBEX 
IBEX 

88.9 
80.5 

94.4 
89.1 

Detection 
Classification 
Classification 

GaussianNB 
deepIBEX 
IBEX 

Finetune 
200 Components , 
depth = 5 
50 Components 
Finetune 
150 Components , 
depth 50 
50 Components 

76.2 
96.2 
68.5 

89.0 
96.8 
75.4 

Classification GaussianNB 69.7 72.5 

scores . 

Process Flow for Training and Applying a Good Vs. Bad 
Classifier 
[ 0169 ] FIG . 16 presents a flowchart 1601 presenting pro 
cess steps for training a good vs. bad classifier and applying 
the trained classifier to classify production images of sec 
tions of an image generating chip . 
[ 0170 ] The processing steps presented in the flowchart 
1601 can be implemented using processors programmed 
using computer programs stored in memory accessible to the 

Performance Improvement by Using Deep Learning 
[ 0165 ] We compared the performance of deep learning 
based approach ( deepIBEX ) with the earlier solutions using 
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computer systems and executable by the processors , by 
dedicated logic hardware , including field programmable 
integrated circuits , and by combinations of dedicated logic 
hardware and computer programs . As with all flowcharts 
herein , it will be appreciated that many of the steps can be 
combined , performed in parallel or performed in a different 
sequence without affecting the functions achieved . Further 
more , it will be appreciated that the flowchart herein shows 
only steps that are pertinent to an understanding of the 
technology , and it will be understood that numerous addi 
tional steps for accomplishing other functions can be per 
formed before , after and between those shown . 
[ 0171 ] The process starts at a step 1602. A create training 
data process step 1610 can include multiple operations 
( 1612 , 1614 , and 1616 ) that can be performed to create 
training data comprising labeled images of sections of an 
image generating chip . The training data creation can 
include producing JxK labeled images ( step 1612 ) . This step 
can include cropping out portions from larger images to 
produce the JxK labeled images . The JxK labeled images 
can be positioned at multiple locations in MxN analysis 
frames ( step 1614 ) . The MxN analysis frames are sized to 
match the input image size required by the convolutional 
neural networks ( CNNs ) . The JxK image may not com 
pletely fill the MxN analysis frame as these can be smaller 
in size to MxN analysis frames . Further , the MxN analysis 
frames can be square - shaped and the JxK images can be 
rectangular - shaped . At a step 1616 , one portion of the JxK 
labeled image positioned in the MxN analysis frame can be 
used to fill in around edges of IxK labeled image . Horizontal 
reflection can be used to fill the MxN analysis frame along 
left and right edges of the analysis frame . Vertical reflection 
can be used to fill the MxN analysis frame along top and 
bottom edges of the MxN analysis frame . The steps pre 
sented above can be repeated to produce many training 
examples by varying the position of a same JxK labeled 
image in the MxN analysis frame . 
[ 0172 ] A convolutional neural network ( CNN ) can be 
trained at a step 1620 using the training data generated by 
performing process steps presented above . The system can 
train a pre - trained CNN such as VGG - 16 or ResNet - 18 
models . The trained CNN model can then be applied to 
production images of sections to classify the images as good 
or bad ( step 1624 ) . Feature engineering techniques such as 
reflection padding can be applied to production images of 
sections of image generating chip to fill MxN input frames 
to the CNN model . Images classified as good or normal by 
the classifier can indicate a successfully completed process . 
The images classified as bad or failed can indicate process 
failure ( step 1626 ) . The process can continue at a step 1628 
to further classify the bad process cycle images to determine 
the root cause of failure . If the production image is classified 
as good , the process can end at a step 1630 . 

a convolutional neural network ( CNN ) to identify and 
classify images of sections of an image generating chip from 
bad or failed or unsuccessful process resulting in process 
cycle failures . The method includes using a convolutional 
neural network ( CNN ) , pretrained to extract image features . 
The pretrained CNN can accept images of dimensions MxN . 
Examples of image dimensions for input to CNNs can 
include 224x224 pixels , 227x227 pixels , 299x299 pixels . 
Alternatively , the size of input images to a CNN can be in 
the range of 200 to 300 pixels on a side or in the range of 
75 to 550 pixels on a side . The input images can be 
square - shaped or rectangular - shaped . The method includes 
creating a training data set using labeled images of dimen 
sions JxK , which is smaller than MxN , that are normal and 
that depict process failure . Example dimensions of IxK 
sized labeled images are 180x80 , 224x100 pixels , 200x90 
pixels , 120x120 pixels , 224x224 pixels , 504x224 pixels , 
etc. The method includes creating a training data set using 
labeled images of dimensions IxK , which is smaller than 
MxN , that are normal and that depict process failure . The 
images are from sections of the image generating chip . The 
method includes positioning the JxK labeled images at 
multiple locations in MxN ( 224x224 ) frames . The method 
includes using at least one portion of a particular JxK 
labeled image to fill in around edges of the particular JxK 
labeled image , thereby filling the M?N frame . 
[ 0175 ] The method includes further training the pretrained 
CNN to produce a section classifier using the training data 
set . The method includes storing coefficients of the trained 
classifier to identify and classify images of sections of the 
image generating chip from production process cycles . The 
trained classifier can accept images of sections of the image 
generating chip and classify the images as normal or depict 
ing process failure . 
[ 0176 ] In a production implementation , the trained CNN 
can be applied to identify bad process cycle images of 
sections of an image generating chip . We now present a 
method of identifying bad process cycle images of sections 
of an image generating chip causing failure of process cycle . 
The method includes creating input to a trained classifier . 
[ 0177 ] The input can either fill the MxN input aperture of 
the image processing framework , or it can have smaller 
dimensions JxK and be reflected to fill the MxN analysis 
frame . Taking the later approach , the creation of input 
includes accessing the image of the section having dimen 
sions JxK . The method includes positioning the JxK image 
in an MxN analysis frame . The method includes using 
horizontal and / or vertical reflections along edges of the JxK 
image positioned in the MxN analysis frame to fill the MxN 
analysis frame . Depending on the relative size of JxK vs 
MxN , some zero padding could be applied , for instance to 
fill narrow strips along the top and bottom of the analysis 
frame , but reflection was found to perform better . The 
method includes inputting to the trained classifier the MxN 
analysis frame . The method includes using the trained 
classifier to classify the image of the section of the image 
generating chip as normal or depicting process failure . The 
method includes outputting a resulting classification of the 
section of the image generating chip . 
[ 0178 ] This method implementation and other methods 
disclosed optionally include one or more of the following 
features . This method can also include features described in 
connection with methods presented above . In the interest of 
conciseness , alternative combinations of method features are 

Particular Implementations 
[ 0173 ] The technology disclosed applies image classifica 
tion for evaluation and root cause analysis of genotyping 
process . Two tasks are performed by the classifiers : separa 
tion of successful and unsuccessful production images , then 
root cause analysis of unsuccessful images . 
Training and Inference of Good Vs. Bad Classifier 
[ 0174 ] We first present classification of successful and 
unsuccessful production images . In one implementation of 
the technology disclosed , a method is described for training 
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not individually enumerated . Features applicable to meth 
ods , systems , and articles of manufacture are not repeated 
for each statutory class set of base features . The reader will 
understand how features identified in this section can readily 
be combined with base features in other statutory classes . 
[ 0179 ] In one implementation , the method further includes 
positioning the JxK image in a center of the MxN analysis 
frame . 
[ 0180 ] In one implementation , the method includes apply 
ing horizontal reflection to the at least one portion of the 
particular JxK labeled image to fill in around edges of the 
particular JxK labeled image in the MxN analysis frame . 
[ 0181 ] In one implementation , the method includes apply 
ing vertical reflection to the at least one portion of the 
particular JxK labeled image to fill in around edges of the 
particular JxK labeled image in the MxN analysis frame . 
[ 0182 ] In one implementation , the producing the JxK 
labeled images by cropping out portions from larger images 
and placing the JxK cropped out portions in the MxN 
frames . Examples of larger image sizes include images of 
dimensions 504x224 pixels or even larger images . 
[ 0183 ] The labeled images of dimensions JxK can be 
obtained by downsampling high resolution images from a 
scanner resulting in reduction in resolution of the high 
resolution images by 1/2 to 1/50 times per side of the original 
resolution in pixels . Reduction to 1/25 times per side reduces 
the count of pixels to 1/625 of the original pixel count . In one 
implementation , the high - resolution images of sections 
obtained from the scanner or the genotyping instrument have 
a size of 3600x1600 pixels . 
[ 0184 ] The computer implemented methods described 
above can be practiced in a system that includes computer 
hardware . The computer implemented system can practice 
one or more of the methods described above . The computer 
implemented system can incorporate any of the features of 
methods described immediately above or throughout this 
application that apply to the method implemented by the 
system . In the interest of conciseness , alternative combina 
tions of system features are not individually enumerated . 
Features applicable to systems , methods , and articles of 
manufacture are not repeated for each statutory class set of 
base features . The reader will understand how features 
identified in this section can readily be combined with base 
features in other statutory classes . 
[ 0185 ] As an article of manufacture , rather than a method , 
a non - transitory computer readable medium ( CRM ) can be 
loaded with program instructions executable by a processor . 
The program instructions when executed , implement one or 
more of the computer - implemented methods described 
above . Alternatively , the program instructions can be loaded 
on a non - transitory CRM and , when combined with appro 
priate hardware , become a component of one or more of the 
computer - implemented systems that practice the methods 
disclosed . 
( 0186 ] Each of the features discussed in this particular 
implementation section for the method implementation 
apply equally to CRM and system implementations . As 
indicated above , all the method features are not repeated 
here , in the interest of conciseness , and should be considered 
repeated by reference . 

network ( CNN ) to classify images of sections of an image 
generating chip by root cause of process failure . The method 
includes using a CNN , pretrained to extract image features . 
The pretrained CNN can accept images of dimensions MxN . 
Examples of image dimensions include 224x224 pixels . The 
method includes creating a training data set using labeled 
images of dimensions JxK , that belongs to at least one 
failure category from a plurality of failure categories result 
ing in process failure . Example dimensions of JxK sized 
labeled images are 180x80 , 200x90 pixels , etc. The images 
are from sections of the image generating chip . The method 
includes positioning the JxK labeled images at multiple 
locations in MxN ( 224x224 ) frames . The method includes 
using at least one portion of a particular JxK labeled image 
to fill in around edges of the particular IxK labeled image , 
thereby filling the MXN frame . The method includes further 
training the pretrained CNN to produce a section classifier 
using the training data set . The method includes storing 
coefficients of the trained classifier to identify and classify 
images of sections of the image generating chip from 
production process cycles . The trained classifier can accept 
images of sections of the image generating chip and classify 
the images by root cause of process failure , among the 
plurality of failure categories . 
[ 0188 ] In a production implementation , the trained CNN 
can be applied to classify bad process cycle images of 
sections . We now present a method of identifying and 
classifying bad process cycle images of sections of an image 
generating chip causing failure of process cycle . The method 
includes creating input to a trained classifier . 
[ 0189 ] The input can either fill the MxN input aperture of 
the image processing framework , or it can have smaller 
dimensions JxK and be reflected to fill the MxN analysis 
frame . Taking the later approach , the creation of input 
includes accessing the image of the section having dimen 
sions JxK . The method includes positioning the JxK image 
in an MxN analysis frame . The method includes using 
horizontal and / or vertical reflections along edges of the JxK 
image positioned in the MxN analysis frame to fill the MxN 
analysis frame . Depending on the relative size of JxK vs 
MxN , some zero padding could be applied , for instance to 
fill narrow strips along the top and bottom of the analysis 
frame , but reflection was found to perform better . The 
method includes inputting to the trained classifier the MxN 
analysis frame . The method includes using the trained 
classifier to classify the image of the section of the image 
generating chip by root cause of process failure , among a 
plurality of failure categories . The method includes output 
ting a resulting classification of the section of the image 
generating chip . 
[ 0190 ] This method implementation and other methods 
disclosed optionally include one or more of the following 
features . This method can also include features described in 
connection with methods presented above . In the interest of 
conciseness , alternative combinations of method features are 
not individually enumerated . Features applicable to meth 
ods , systems , and articles of manufacture are not repeated 
for each statutory class set of base features . The reader will 
understand how features identified in this section can readily 
be combined with base features in other statutory classes . 
[ 0191 ] In one implementation , the method further includes 
positioning the JxK image in a center of the MxN analysis 
frame . 

Training and Inference Root Cause Analysis 
[ 0187 ] In one implementation of the technology disclosed , 
a method is described for training a convolutional neural 
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[ 0192 ] In one implementation , the method includes apply 
ing horizontal reflection to the at least one portion of the 
particular JxK labeled image to fill in around edges of the 
particular JxK labeled image in the MxN analysis frame . 
[ 0193 ] In one implementation , the method includes apply 
ing vertical reflection to the at least one portion of the 
particular JxK labeled image to fill in around edges of the 
particular JxK labeled image in the MxN analysis frame . 
[ 0194 ] In one implementation , the producing the JxK 
labeled images by cropping out portions from larger images 
and placing the JxK cropped out portions in the MxN 
frames . Examples of larger image sizes include images of 
dimensions 504x224 pixels or even larger images . 
[ 0195 ] The labeled images of dimensions JxK are 
obtained by downsampling high resolution images from a 
scanner resulting in reduction in resolution of the high 
resolution images by 1/2 to 1 / s0 times the original resolution . 
In one implementation , the high - resolution images of sec 
tions obtained from the scanner or the genotyping instru 
ment have a size of 3600x1600 pixels . 
[ 0196 ] The plurality of failure categories can include at 
least a hybridization failure , a space shift failure , an offset 
failure , a surface abrasion failure , and a reagent flow failure . 
[ 0197 ] The plurality of failure categories can include a 
residual failure category indicating unhealthy patterns on 
images due to unidentified causes of failure . 
[ 0198 ] The computer implemented methods described 
above can be practiced in a system that includes computer 
hardware . The computer implemented system can practice 
one or more of the methods described above . The computer 
implemented system can incorporate any of the features of 
methods described immediately above or throughout this 
application that apply to the method implemented by the 
system . In the interest of conciseness , alternative combina 
tions of system features are not individually enumerated . 
Features applicable to systems , methods , and articles of 
manufacture are not repeated for each statutory class set of 
base features . The reader will understand how features 
identified in this section can readily be combined with base 
features in other statutory classes . 
[ 0199 ] As an article of manufacture , rather than a method , 
a non - transitory computer readable medium ( CRM ) can be 
loaded with program instructions executable by a processor . 
The program instructions when executed , implement one or 
more of the computer - implemented methods described 
above . Alternatively , the program instructions can be loaded 
on a non - transitory CRM and , when combined with appro 
priate hardware , become a component of one or more of the 
computer - implemented systems that practice the methods 
disclosed . 
[ 0200 ] Each of the features discussed in this particular 
implementation section for the method implementation 
apply equally to CRM and system implementations . As 
indicated above , all the method features are not repeated 
here , in the interest of conciseness , and should be considered 
repeated by reference . 

pretrained to extract image features . The pretrained CNN 
can accept images of dimensions MxN . The method 
includes creating a training data set using labeled images of 
dimensions JxK , that are normal and that belong to at least 
one failure category from a plurality of failure categories 
resulting in process failure . The images are from sections of 
the image generating chip . The method includes positioning 
the JxK labeled images at multiple locations in MxN ( 224x 
224 ) frames . The method includes using at least one portion 
of a particular JxK labeled image to fill in around edges of 
the particular JxK labeled image , thereby filling the MxN . 
The method includes further training the pretrained CNN to 
produce a section classifier using the training data set . The 
method includes storing coefficients of the trained classifier 
to identify and classify images of sections of the image 
generating chip from production process cycles . The trained 
classifier can accept images of sections of the image gen 
erating chip and classify the images as normal or as belong 
ing to at least one failure category from a plurality of failure 
categories resulting in process failure . 
[ 0202 ] In a production implementation , the trained CNN 
can be applied to classify bad process cycle images of 
sections . We present a method of identifying bad process 
cycle images of sections of an image generating chip caus 
ing failure of process cycle . The method includes creating 
input to a trained classifier . 
[ 0203 ] The input can either fill the MxN input aperture of 
the image processing framework , or it can have smaller 
dimensions JxK and be reflected to fill the MxN analysis 
frame . Taking the later approach , the creation of input 
includes accessing the image of the section having dimen 
sions JxK . The method includes positioning the JxK image 
in an MxN analysis frame . The method includes using 
horizontal and / or vertical reflections along edges of the JxK 
image positioned in the MxN analysis frame to fill the MxN 
analysis frame . Depending on the relative size of IxK vs 
MxN , some zero padding could be applied , for instance to 
fill narrow strips along the top and bottom of the analysis 
frame , but reflection was found to perform better . The 
method includes inputting to the trained classifier the MxN 
analysis frame . The method includes using the trained 
classifier to classify the image of the section of the image 
generating chip as normal or as belonging to at least one 
failure category from a plurality of failure categories . The 
method includes outputting a resulting classification of the 
section of the image generating chip . 
[ 0204 ] This method can also include features described in 
connection with methods presented above . In the interest of 
conciseness , alternative combinations of method features are 
not individually enumerated . Features applicable to meth 
ods , systems , and articles of manufacture are not repeated 
for each statutory class set of base features . The reader will 
understand how features identified in this section can readily 
be combined with base features in other statutory classes . 
[ 0205 ] The computer implemented methods described 
above can be practiced in a system that includes computer 
hardware . The computer implemented system can practice 
one or more of the methods described above . The computer 
implemented system can incorporate any of the features of 
methods described immediately above or throughout this 
application that apply to the method implemented by the 
system . In the interest of conciseness , alternative combina 
tions of system features are not individually enumerated . 
Features applicable to systems , methods , and articles of 

a 

Combined , Single Pass Good Vs Bad Detection and Root 
Cause of Process Failure 
[ 0201 ] In one implementation of the technology disclosed , 
a method is described for training a convolutional neural 
network ( CNN ) to identify and classify images of sections of 
an image generating chip from bad process cycles resulting 
in process cycle failures . The method includes using a CNN , 
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manufacture are not repeated for each statutory class set of 
base features . The reader will understand how features 
identified in this section can readily be combined with base 
features in other statutory classes . 
[ 0206 ] As an article of manufacture , rather than a method , 
a non - transitory computer readable medium ( CRM ) can be 
loaded with program instructions executable by a processor . 
The program instructions when executed , implement one or 
more of the computer - implemented methods described 
above . Alternatively , the program instructions can be loaded 
on a non - transitory CRM and , when combined with appro 
priate hardware , become a component of one or more of the 
computer - implemented systems that practice the methods 
disclosed . 
[ 0207 ] Each of the features discussed in this particular 
implementation section for the method implementation 
apply equally to CRM and system implementations . As 
indicated above , all the method features are not repeated 
here , in the interest of conciseness , and should be considered 
repeated by reference . 

[ 0213 ] Memory used in the storage subsystem can include 
a number of memories including a main random access 
memory ( RAM ) 1732 for storage of instructions and data 
during program execution and a read only memory ( ROM ) 
1734 in which fixed instructions are stored . The file storage 
subsystem 1736 can provide persistent storage for program 
and data files , and can include a hard disk drive , a floppy 
disk drive along with associated removable media , a CD 
ROM drive , an optical drive , or removable media cartridges . 
The modules implementing the functionality of certain 
implementations can be stored by file storage subsystem in 
the storage subsystem , or in other machines accessible by 
the processor . 
[ 0214 ] Bus subsystem 1755 provides a mechanism for 
letting the various components and subsystems of computer 
system communicate with each other as intended . Although 
bus subsystem is shown schematically as a single bus , 
alternative implementations of the bus subsystem can use 
multiple busses . 
[ 0215 ] Computer system itself can be of varying types 
including a personal computer , a portable computer , a work 
station , a computer terminal , a network computer , a televi 
sion , a mainframe , a server farm , a widely - distributed set of 
loosely networked computers , or any other data processing 
system or user device . Due to the ever - changing nature of 
computers and networks , the description of computer system 
depicted in FIG . 17 is intended only as a specific example for 
purposes of illustrating the technology disclosed . Many 
other configurations of computer system are possible having 
more or less components than the computer system depicted 
in FIG . 17 . 
[ 0216 ] The computer system 1700 includes GPUs or 
FPGAs 1778. It can also include machine learning proces 
sors hosted by machine learning cloud platforms such as 
Google Cloud Platform , Xilinx , and Cirrascale . Examples of 
deep learning processors include Google's Tensor Process 
ing Unit ( TPU ) , rackmount solutions like GX4 Rackmount 
Series , GX8 Rackmount Series , NVIDIA DGX - 1 , 
Microsoft Stratix V FPGA , Graphcore's Intelligent Proces 
sor Unit ( IPU ) , Qualcomm's Zeroth platform with Snap 
dragon processors , NVIDIA's Volta , NVIDIA's DRIVE PX , 
NVIDIA's JETSON TX1 / TX2 MODULE , Intel's Nirvana , 
Movidius VPU , Fujitsu DPI , ARM's Dynamic IQ , IBM 
TrueNorth , and others . 

Computer System 
[ 0208 ] FIG . 17 is a simplified block diagram of a computer 
system 1700 that can be used to implement the technology 
disclosed . Computer system typically includes at least one 
processor 1772 that communicates with a number of periph 
eral devices via bus subsystem 1755. These peripheral 
devices can include a storage subsystem 1710 including , for 
example , memory subsystem 1722 and a file storage sub 
system 1736 , user interface input devices 1738 , user inter 
face output devices 1776 , and a network interface subsystem 
1774. The input and output devices allow user interaction 
with computer system . Network interface subsystem pro 
vides an interface to outside networks , including an interface 
to corresponding interface devices in other computer sys 
tems . 
[ 0209 ] In one implementation , the Good vs. Bad classifier 
151 to classify bad images is communicably linked to the 
storage subsystem and user interface input devices . 
[ 0210 ] User interface input devices 1738 can include a 
keyboard ; pointing devices such as a mouse , trackball , 
touchpad , or graphics tablet ; a scanner ; a touch screen 
incorporated into the display ; audio input devices such as 
voice recognition systems and microphones ; and other types 
of input devices . In general , use of the term “ input device " 
is intended to include all possible types of devices and ways 
to input information into computer system . 
[ 0211 ] User interface output devices 1776 can include a 
display subsystem , a printer , a fax machine , or non - visual 
displays such as audio output devices . The display subsys 
tem can include a cathode ray tube ( CRT ) , a flat - panel 
device such as a liquid crystal display ( LCD ) , a projection 
device , or some other mechanism for creating a visible 
image . The display subsystem can also provide a non - visual 
display such as audio output devices . In general , use of the 
term “ output device ” is intended to include all possible types 
of devices and ways to output information from computer 
system to the user or to another machine or computer 
system . 
[ 0212 ] Storage subsystem 1710 stores programming and 
data constructs that provide the functionality of some or all 
of the modules and methods described herein . These soft 
ware modules are generally executed by processor alone or 
in combination with other processors . 

a 

What is claimed is : 
1. A method of training a convolutional neural network to 

identify and classify images of sections of an image gener 
ating chip resulting in process failure , including : 

using the convolutional neural network , pretrained to 
extract image features , wherein the pretrained convo 
lutional neural network accepts images of dimensions 
MxN ; 

creating a training data set using labeled images of 
dimensions JxK , which is smaller than MxN , that 
depict process success and failure ; 
the labeled images are from sections of the image 

generating chip , 
positioning the JxK labeled images at multiple loca 

tions in MxN frames , 
using at least one portion of a particular JxK labeled 

image to fill in around edges of the particular JxK 
labeled image , thereby filling the MxN frame ; 
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further training the pretrained convolutional neural net 
work to produce a section classifier using the training 
data set ; and 

storing coefficients of the trained classifier to identify and 
classify images of sections of the image generating chip 
from production process cycles . 

2. The method of claim 1 , wherein the trained classifier 
can accept images of sections of the image generating chip 
and classify the images as depicting process success and 
failure . 

3. The method of claim 1 , wherein using at least one 
portion of a particular JxK labeled image to fill in around 
edges of the particular JxK labeled image , further including : 

applying horizontal reflection to the at least one portion of 
the particular JxK labeled image . 

4. The method of claim 1 , wherein using at least one 
portion of a particular JxK labeled image to fill in around 
edges of the particular JxK labeled image , further including : 

applying vertical reflection to the at least one portion of 
the particular JxK labeled image . 

5. The method of claim 1 , wherein creating the training 
data set using labeled images of dimensions JxK , further 
including : 

producing the JxK labeled images by cropping out por 
tions from larger images and placing the JxK cropped 
out portions in the MxN frames . 

6. The method of claim 1 , wherein labeled images of 
dimensions JxK are obtained by downsampling high - reso 
lution images from a scanner resulting in reduction in 
resolution of the high - resolution images by 1/2 to 1 / so times 
per side . 

a 
7. The method of claim 6 , wherein the high - resolution 

images obtained from the scanner have a size of 3600x1600 
pixels . 

8. The method of claim 1 , further including , identifying 
process cycle images of sections of the image generating 
chip causing failure of process cycle , including : 

creating input to the trained classifier including : 
accessing the image of the section having dimensions 
JxK , 

positioning the JxK image in an MxN analysis frame , 
inputting to the trained classifier the MxN analysis frame ; 
applying the trained classifier , classifying the image of the 

section of the image generating chip as good or failed ; 
and 

outputting a resulting classification of the section of the 
image generating chip . 

9. The method of claim 8 , wherein creating input to the 
trained classifier , further including : 

using at least one portion of a particular JxK labeled 
image to fill in around edges of the particular JxK 
labeled image , thereby filling the MxN analysis frame . 

10. A non - transitory computer readable storage medium 
impressed with computer program instructions to identify 
and classify images of sections of an image generating chip 
resulting in process failure , including , the instructions , when 
executed on a processor , implement a method comprising : 

using a convolutional neural network , pretrained to 
extract image features , wherein the pretrained convo 
lutional neural network accepts images of dimensions 
MxN ; 

creating a training data set using labeled images of 
dimensions JxK , which is smaller than MxN , that 
depict process success and failure ; 

the labeled images are from sections of the image 
generating chip , 

positioning the JxK labeled images at multiple loca 
tions in MxN frames , 

using at least one portion of a particular JxK labeled 
image to fill in around edges of the particular JxK 
labeled image , thereby filling the MxN frame ; 

further training the pretrained convolutional neural net 
work to produce a section classifier using the training 
data set ; and 

storing coefficients of the trained classifier to identify and 
classify images of sections of the image generating chip 
from production process cycles . 

11. The non - transitory computer readable storage medium 
of claim 10 , wherein the trained classifier can accept images 
of sections of the image generating chip and classify the 
images as depicting process success and failure . 

12. The non - transitory computer readable storage medium 
of claim 10 , wherein using at least one portion of a particular 
JxK labeled image to fill in around edges of the particular 
JxK labeled image , implementing the method further com 
prising : 

applying horizontal reflection to the at least one portion of 
the particular IxK labeled image . 

13. The non - transitory computer readable storage medium 
of claim 10 , wherein using at least one portion of a particular 
JxK labeled image to fill in around edges of the particular 
JxK labeled image , implementing the method further com 
prising : 

applying vertical reflection to the at least one portion of 
the particular JxK labeled image . 

14. The non - transitory computer readable storage medium 
of claim 10 , wherein creating the training data set using 
labeled images of dimensions JxK , implementing the 
method further comprising : 

producing the JxK labeled images by cropping out por 
tions from larger images and placing the JxK cropped 
out portions in the MxN frames . 

15. The non - transitory computer readable storage medium 
of claim 10 , wherein labeled images of dimensions JxK are 
obtained by downsampling high - resolution images from a 
scanner resulting in reduction in resolution of the high 
resolution images by 1/2 to 1so times per side . 

16. The non - transitory computer readable storage medium 
of claim 15 , wherein the high - resolution images obtained 
from the scanner have a size of 3600x1600 pixels . 

17. The non - transitory computer readable storage medium 
of claim 10 , implementing the method further comprising : 

creating input to the trained classifier including : 
accessing the image of the section having dimensions 
JXK , 

positioning the JxK image in an MxN analysis frame , 
inputting to the trained classifier the MxN analysis frame ; 
applying the trained classifier , classifying the image of the 

section of the image generating chip as good or failed ; 
and 

outputting a resulting classification of the section of the 
image generating chip . 

18. The non - transitory computer readable storage medium 
of claim 17 , implementing the method further comprising : 

using at least one portion of a particular JxK labeled 
image to fill in around edges of the particular JxK 
labeled image , thereby filling the MxN analysis frame . 
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19. A system including one or more processors coupled to 
memory , the memory loaded with computer instructions to 
identify and classify images of sections of an image gener 
ating chip resulting in process failure , the instructions , when 
executed on the processors , implement actions comprising : 

using a convolutional neural network , pretrained to 
extract image features , wherein the pretrained convo 
lutional neural network accepts images of dimensions 
MxN ; 

creating a training data set using labeled images of 
dimensions JxK , which is smaller than MxN , that 
depict process success and failure ; 
the labeled images are from sections of the image 

generating chip , 
positioning the JxK labeled images at multiple loca 

tions in MxN frames , 
using at least one portion of a particular JxK labeled 

image to fill in around edges of the particular JxK 
labeled image , thereby filling the MxN frame ; 

further training the pretrained convolutional neural net 
work to produce a section classifier using the training 
data set ; and 

storing coefficients of the trained classifier to identify and 
classify images of sections of the image generating chip 
from production process cycles . 

20. The system of claim 19 , wherein the trained classifier 
can accept images of sections of the image generating chip 
and classify the images as depicting process success and 
failure . 

21. The system of claim 19 , wherein using at least one 
portion of a particular JxK labeled image to fill in around 
edges of the particular JxK labeled image , further imple 
menting actions comprising : 

applying horizontal reflection to the at least one portion of 
the particular JxK labeled image . 

22. The system of claim 19 , wherein using at least one 
portion of a particular JxK labeled image to fill in around 
edges of the particular JxK labeled image , further imple 
menting actions comprising : 

applying vertical reflection to the at least one portion of 
the particular JxK labeled image . 

23. The system of claim 19 , wherein creating the training 
data set using labeled images of dimensions JxK , further 
implementing actions comprising : 

producing the JxK labeled images by cropping out por 
tions from larger images and placing the JxK cropped 
out portions in the MxN frames . 

24. The system of claim 19 , wherein labeled images of 
dimensions JxK are obtained by downsampling high - reso 
lution images from a scanner resulting in reduction in 
resolution of the high - resolution images by 1/2 to 1/50 times 
per side . 

25. The system of claim 24 , wherein the high - resolution 
images obtained from the scanner have a size of 3600x1600 
pixels . 

26. The system of claim 19 , further implementing actions 
comprising : 

creating input to the trained classifier including : 
accessing the image of the section having dimensions 
JXK , 

positioning the JxK image in an MxN analysis frame , 
inputting to the trained classifier the MxN analysis frame ; 
applying the trained classifier , classifying the image of the 

section of the image generating chip as good or failed ; 
and 

outputting a resulting classification of the section of the 
image generating chip . 

27. The system of claim 26 , further implementing actions 
comprising : 

using at least one portion of a particular JxK labeled 
image to fill in around edges of the particular JxK 
labeled image , thereby filling the MxN analysis frame . 
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