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Abstract

Motivation: Cancer develops through a process of clonal evolution in which an initially healthy cell gives rise to pro-
geny gradually differentiating through the accumulation of genetic and epigenetic mutations. These mutations can
take various forms, including single-nucleotide variants (SNVs), copy number alterations (CNAs) or structural varia-
tions (SVs), with each variant type providing complementary insights into tumor evolution as well as offering dis-
tinct challenges to phylogenetic inference.

Results: In this work, we develop a tumor phylogeny method, TUSV-ext, which incorporates SNVs, CNAs and SVs
into a single inference framework. We demonstrate on simulated data that the method produces accurate tree infer-
ences in the presence of all three variant types. We further demonstrate the method through application to real pros-
tate tumor data, showing how our approach to coordinated phylogeny inference and clonal construction with all
three variant types can reveal a more complicated clonal structure than is suggested by prior work, consistent with
extensive polyclonal seeding or migration.

Availability and implementation: https://github.com/CMUSchwartzLab/TUSV-ext.

Contact: russells@andrew.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is widely understood as an evolutionary process (Nowell,
1976), in which gradual accumulation of somatic genetic alterations
occurs in parallel with selection for mutations promoting tumor
growth or other aspects of disease progression. The evolutionary his-
tory is reflected in various kinds of genetic or epigenetic variations
tumor cell lineages might accumulate (Davis et al., 2017). The sto-
chastic nature of the evolutionary process typically results in high
genetic and epigenetic heterogeneity both between distinct tumors
(inter-tumor heterogeneity) and between cell lineages in single
tumors (intra-tumor heterogeneity). A vibrant field of ‘tumor phylo-
genetics’ (Desper et al., 1999) has arisen with the goal of using such
variations to reconstruct the history of single tumors in order to bet-
ter understand the evolutionary landscapes of tumor cell lineages
and how individual tumors navigate them.

The general idea of tumor phylogenetics has spawned numerous
variants devoted to distinct kinds or combinations of genetic data or
variation type (Schwartz and Schäffer, 2017). To date, most such
methods have been developed to work with bulk sequencing, in
which one has mixed samples of genomic data from many tumor
cells and must computationally deconvolve them to infer distinct
cell lineages that can be resolved into a phylogeny (Schwartz and
Shackney, 2010). Methods for deconvolutional phylogenetics of
bulk genomic data have been developed predominantly for inference
of genetic variation from single-nucleotide variant (SNV) data (El-

Kebir et al., 2015; Roth et al., 2014; Yuan et al., 2015). It has be-
come increasingly apparent that copy number alterations (CNAs)
are of at least comparable importance to SNVs in tumor evolution,
however, prompting increasing numbers of methods for CNAs
(Oesper et al., 2013; Zaccaria et al., 2018; Zaccaria and Raphael,
2020) or combined SNV and CNA data (Deshwar et al., 2015; El-
Kebir et al., 2016; Li and Xie, 2015; Sashittal et al., 2021). More re-
cently, it has also been shown to be possible to infer phylogenies
incorporating structural variations (SVs) (Eaton et al., 2018) such as
large deletions or translocations, which are more complicated to re-
solve phylogenetically but often key events in driving tumor
evolution.

Attention in the field has increasingly turned to single-cell data
(Gao et al., 2016; Navin et al., 2011), which can greatly improve on
the limited accuracy and resolution of computational deconvolution
in resolving intratumor heterogeneity and clonal progression
(Kuipers et al., 2017). Single-cell sequencing also has substantial
drawbacks, however. Single-cell tumor phylogeny methods (e.g.
Satas et al., 2020; Zafar et al., 2019) must contend with technical
artifacts, such as allelic dropouts (Wang et al., 2012). Furthermore,
single-cell data, particularly single-cell DNA-seq (scDNA-seq),
remains costly to gather and thus all large tumor data resources are
still based on bulk sequence. Some methods have been proposed to
combine bulk and single-cell sequence (Lei et al., 2020; Malikic
et al., 2019) or other heterogeneous data combinations (Fu et al.,
2021; Lei et al., 2021), but major sequencing efforts to date have
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not been designed to take advantage of such methods. Furthermore,
single-cell data so far has limited ability to capture SVs as well as
limited resolution for CNAs. As a result, deconvolutional methods
remain important particularly for studies of variations other than
SNVs.

To date, there has been no method that integrates all major vari-
ant types (SNVs, SVs and CNAs) into a single clonal lineage tree in-
ference. This is particularly problematic as these variants typically
occur together and offer complementary advantages for understand-
ing tumor evolution. SNVs are the simplest to handle phylogenetic-
ally and are often relatively numerous. CNAs are likely more
important to understanding functional adaptation in cancers (Zack
et al., 2013) and can be a confounding factor in interpreting SNVs
correctly, but they are more challenging to interpret phylogenetical-
ly, particularly in deconvolutional settings. SVs can also have pro-
found effects on genome function and can confound interpretation
of other variant types (Li et al., 2020). SVs may also be particularly
useful as phylogenetic markers because they are comparatively rare,
but this rarity also means they are poorly suited for phylogenetic in-
ference on their own. So far, TUSV (Eaton et al., 2018) has been the
only sequencing-based tumor phylogeny method capturing SVs,
which it did in conjunction with CNAs. However, it used a limited
model of CNAs, for example in neglecting information on allelic
specific copy number changes that are important for interpreting
other variants. Most importantly, it did not incorporate SNVs, thus
omitting a great deal of information that may be informative about
both phylogenies and functional adaptation.

In this work, we develop a next generation tool we call TUSV-
ext: the first tumor phylogeny software to accommodate SNVs,
CNAs and SVs within a single phylogenetic framework and resolve
all three together as markers of tumor evolution. It accomplishes
this by extending the TUSV integer linear programming (ILP) frame-
work. Major improvements over the prior work include (i) allelic
segmental copy numbers and joint phasing of breakpoints and

SNVs; (ii) a Dollo parsimony model of both breakpoints and SNVs,
in which SNVs or breakpoints can be acquired once but potentially
lost or duplicated multiple times only through copy number change;
and (iii) a subsampling and assignment mechanism for productively
managing larger number of variants. Extensions (i) and (ii) are espe-
cially helpful for integrated inference of SNVs and CNAs due to
improvements in estimation of VAF of SNVs with current tools. We
demonstrate on simulated data that the method shows generally su-
perior performance in practice in comparison to the prior art at
common subtasks, in addition to accommodating a broader set of
variant types than any prior methods in this space. We further apply
TUSV-ext to a published prostate cancer dataset (Gundem et al.,
2015) where it yields results consistent with prior findings and re-
vealing of novel insight into how these variant types are complemen-
tary in reconstructing evolution of a single tumor.

2 Materials and methods

Figure 1 provides a high-level overview of our method. Our method
aims to infer genetic variation profiles (SNVs, CNAs and SVs) of
multiple tumor clones and the distributions of these clones across
samples from bulk DNA sequencing data. Each SV is described by a
pair of breakpoints with chromosomal, positional and directional
information, showing an abnormal junction compared with normal
genome, which is often identified from discordant and split reads.
Each CNA is described as a copy number of a genome segment,
showing the level of aneuploidy of tumor sample. Each SNV is
described by a location in the genome and a variant allele frequency
(VAF) as estimated by the ratio of sequencing reads of alternate and
reference alleles. Using the aforementioned variant types as input,
we seek to assign variants to a set of inferred tumor clones and sim-
ultaneously infer a tumor phylogenetic tree representing the evolu-
tionary history of these clones.

Fig. 1. Overview of the tumor evolution reconstruction method of TUSV-ext. (1) Multi-regional samples are collected from one or more tumor sites or progressions stages,

assumed to contain different compositions of a common set of clones, which we assume have been sequenced and from which various variant types have been called. (2) We

subsample the structural variants and SNVs as needed and preprocess the variant information into three matrices: a variants copy number matrix F, a positional encoding ma-

trix Q, and a breakpoints pairing matrix G. (3) We then apply the TUSV-ext algorithm to deconvolve the mixed samples into a set of clones each defined by a variant set, copy

number profile, and frequency in each sample, as well as an inferred phylogeny on the clones. (4) By using the inferred frequencies and segmental copy number information of

each clone, we assign unsampled breakpoints and SNVs to the inferred phylogeny to obtain a comprehensive evolutionary trajectory
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2.1 Problem statement
Our method takes as input processed variant calls with paired
breakpoint ends and their estimated mean copy numbers describing
SVs, allelic mean copy numbers of genome segments describing
CNAs, and estimated mean copy numbers of SNVs in Variant Call
Format (VCF) format. We encode these variations in three matrices,
F, Q and G, which contain mean variant copy numbers (F), pos-
itional relationships between breakpoints/SNVs and copy number
segments (Q), and pairing information for genomic breakpoints
identifying which genome segments are involved in SVs for a set of
genomic samples (G). Mathematical details of the matrices can be
found in Table 1. Our goal is to deconvolve the mixed samples by
minimizing an objective function:

minU;CjF �UCj þ k1Rþ k2S; (1)

to solve for a matrix of variant copy number profiles for each clone
C and a matrix of clonal frequencies U with constraints from phylo-
genetic trees and relationships among different variants. An L1 loss
function between the reconstructed mixed profiles of variant copy
numbers (UC) and real bulk sample(s) (F) defines the main term of
the objective, which ensures that deconvolved clonal profiles and
compositions are as similar as possible when they are mixed together
under the inferred frequencies. Q and G are used in setting the con-
straints and but not in the objective function.

The model uses two regularization terms, R and S, to establish
penalties corresponding to an evolutionary distance measure used to
favor minimum-evolution phylogenies and consistency between
variant types, respectively. The term R is an L1 distance of the clonal
copy number profiles summed over edges of the inferred phylogeny,
where we seek to penalize for large evolutionary distance that would
suggest an unlikely phylogeny. This term is equivalent to implicitly
assuming that copy numbers evolve by gain or loss of single copies
of single genome segments with uniform rate. The term S aims to
penalize for large discrepancies between the inferred frequencies of
variants and their empirically observed frequencies. The problem
statement is at a high level similar to that of the original TUSV
(Eaton et al., 2018), although the formulation of each term is sub-
stantially extended to handle SNV markers and allele-specific copy
numbers of all variants, among other changes. Due to space limits,

the complete problem statement as an ILP is provided in
Supplementary Methods S1. In the remainder of this section, we
provide a summary of the main components of the ILP, highlighting
novel extensions compared with our prior work (Eaton et al., 2018).

2.2 Algorithm: coordinate descent
We use coordinate descent to solve for matrices U and C given input
matrices F, Q and G as in Eaton et al. (2018). We first initialize the
U matrix randomly under the constraint that

PN
k¼1 up;k ¼ 1;8p 2

f1 . . . mg and solve for C with fixed U. We then fix C and solve for
U. These steps alternate iteratively until convergence or a maximum
number of iterations are reached. Random starts are optionally
allowed to reduce risk of solutions being stuck in local optima. Each
step of the coordinate descent algorithm is posed in terms of an ILP
optimization problem as described in more detail in the
Supplementary Methods S1. Descriptions of all major parameters or
variables are found in Table 1.

2.2.1 Estimating clonal frequency matrix U
As described in Eaton et al. (2018), we construct an ILP describing
the element-wise absolute distance between F and UC. U can be
solved in terms of F and C by minimizing only the first term of the
objective function, jF �UCj, as the two penalty terms do not depend
on U, under the constraint that the sum of the frequencies of all
clones in each sample is one (see Supplementary Method S1
Equation (S27)–(S30) for detailed ILP formulation).

To allow compatibility with other methods for purposes of
comparison, we also provide a leaf-only version of the ILP where
non-leaf nodes (except the root node representing the normal cell
population) are constrained to have zero fractions and only the leaf
nodes are allowed to have non-zero estimated frequencies.

2.2.2 Estimating copy number matrix C
The method next fixes U and solves for C given input matrices F, G
and Q. Because C encodes the variant copy number profile of each
subclone, it is related to the underlying evolutionary tree structure
and can be used to constrain possible trees as described in the next
section.

Table 1. Essential parameters and variables

Notation Meaning

F 2 Rm�ðlþgþ2rÞ
�0 fp;v Average copy number of variant v in sample p

Q 2 f0; 1gðlþgÞ�r qb;s ¼ 1 iff breakpoint or SNV b is in segment s, else 0

G 2 f0; 1gl�l gb1 ;b2
¼ 1 iff breakpoint b1 and b2 are paired breakpoints deriving from the same SV

l The number of breakpoints

g The number of SNVs

r The number of haploid copy number segments

n The number of leaves in the phylogenetic tree

N The number of total clones in the phylogenetic tree, N ¼ 2n� 1

m The number of samples

cmax The maximum allowed copy number for each segment

C 2 Zn�ðlþgþ2rÞ
�0 ck;v is the copy number of variants in clone k. When v 2 f1; . . . ; lg, it represents the copy number of

breakpoint v. When v 2 fl þ 1; . . . ; l þ gg, it represents the copy number of SNV v. When v 2
fl þ gþ 1; . . . ; l þ gþ rg or v 2 fl þ gþ rþ 1; . . . ; l þ gþ 2rg, it represents the copy number of seg-

ment v from one allele or another

U 2 Rm�k
�0 up;k is the frequency of clone k in sample p

E 2 f0; 1gN�N ei;j ¼ 1 iff there is a directed edge from clone i to clone j in the phylogenetic tree, else 0

A 2 f0; 1gN�N ai;j ¼ 1 iff clone i is an ancestor of clone j in the phylogenetic tree, else 0

W 2 f0; 1gN�N�ðlþgÞ wi;j;b is a 0–1 binary indicator, 1 iff breakpoint or SNV b occur at edge from node i to j else 0

D 2 f0; 1gðlþgÞ�2 db ¼ 1 indicates that the breakpoint b is in the first allele and db ¼ 0 indicates the second allele

C 2 ZN�ðlþgÞ�2
�0 ci;b;0 is the segment copy number of node i at the position where breakpoint b locate in the first allele

and ci;b;1 the second allele

W 2 Zm�ðlþgÞ
�0 wp;b is the mixed copy number of segment in sample p for both allele that contains the breakpoint or

SNV b
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Phylogenetic constraints: As in Eaton et al. (2018), in order to re-
late the copy number profiles to the phylogenetic tree T, we define
an edge matrix EN�N describing parent-child relationships in T,
where ei;j ¼ 1 indicates clone i is the direct parent of clone j, as well
as an ancestor matrix to describe ancestor-descendent relationships
in the tree, where ai;j ¼ 1 indicates clone i is an ancestor of clone j.
We assume the phylogenetic tree T is a binary tree without loss of
generality. We impose basic phylogenetic constraints on the root, in-
ternal and leaf nodes to ensure the tree is binary (see Supplementary
Method S1 Equations (S31)–(S39) for details).

Beyond the common constraints, we add new constraints to break
cycles, which we enforce by requiring that for any two nodes i and j, ei-
ther i is the ancestor of j, j is the ancestor of i or neither is the other’s
ancestor, and that a node cannot be its own ancestor or descendent:

ai;j þ aj;i <¼ 1;8i; j 2 f1; . . . ;Ng (2)

ai;i ¼ 0;8i 2 f1; . . . ;Ng (3)

Subclone variant copy number constraints: The tree describes
somatic variations accumulating after descent from the root node
and so we assume that the root has no breakpoints or SNVs
(Equation (5)) and has a single copy of each allele in each genomic
segment (Equation (6)). For algorithmic convenience, we also re-
strict copy numbers to a maximum value cmax (Equation (4)).

ck;s � cmax;8k 2 f1; . . . ;Ng; s 2 f1; . . . ; l þ gþ 2rg (4)

cN;b ¼ 0;8b 2 f1; . . . ; l þ gg (5)

cN;lþgþs ¼ 1;8s 2 f1; . . . ; 2rg (6)

In contrast to the original TUSV, we use two temporary variables
x1

i;j;s and x2
i;j;s corresponding to two original alleles, instead of one vari-

able xi;j;s, to define the absolute changes in copy numbers of segment s
of two alleles on edge (vi, vj), where eij ¼ 1 and xi;j;s will define the
exact absolute allelic copy number change from node i to j. In the other
scenario, where eij¼ 0, the temporary variables are set to be 0.

0 � x1
i;j;s � cmaxei;j; 8s 2 f1; . . . ; rg (7)

x1
i;j;s � ci;sþlþg � cj;sþlþg � cmaxð1� ei;jÞ (8)

x1
i;j;s � �ci;sþlþg þ cj;sþlþg � cmaxð1� ei;jÞ (9)

0 � x2
i;j;s � cmaxei;j (10)

x2
i;j;s � ci;sþlþgþr � cj;sþlþgþr � cmaxð1� ei;jÞ (11)

x2
i;j;s � �ci;sþlþgþr þ cj;sþlþgþr � cmaxð1� ei;jÞ (12)

We add these two copy numbers together through all segments
and all edges to form a copy number evolutionary distance used in
regularization term R:

qi;j ¼
Xr

s¼1

x1
i;j;s þ

Xr

s¼1

x2
i;j;s (13)

R ¼
XN
i¼1

XN
j¼1

qi;j (14)

Perfect phylogeny on breakpoints and SNVs: We constrain each
pair of breakpoints so that they must appear on a common edge in
the tree and impose a Dollo phylogeny constraint on SV breakpoints
to ensure that each variant can only appear once as described in
Eaton et al. (2018).

As a new feature, we add SNVs with the same Dollo assumption
(Supplementary Equation (S46)). The assumption of no homoplasy
is more dubious for SNVs than for SVs and may be a source of error,
but one we permit out of algorithmic necessity. Therefore we define
W 2 f0;1gN�N�ðlþgÞ to describe the edge on which each breakpoint

or SNV occurs, where wi;j;b ¼ 1 if variant b occurs at the edge from
node i to j and 0 otherwise (Supplementary Equation (S44)–(S45)).

We first define a binarization operator, as described in Zaccaria
et al. (2018) and Eaton et al. (2018), as follows.

x ¼
(

1 x > 0
0 x ¼ 0

and then define an auxiliary variable X to help define W (see
Supplementary Method S1 Equations (S42) and (S43) for detail of
how the binarization operator is defined and Supplementary
Equation (S44)–(S46) for Dollo phylogeny constraints on both
SNVs and breakpoints).

In addition, we assume it to be very unlikely that one variant, es-
pecially a structural variant defined at base resolution, can revert so
that the variant is lost autonomously. Rather, we assume losses will
occur only by copy number change resulting in loss of the allele con-
taining the variant. Therefore, we impose constraints that every loss
of a breakpoint or SNV should co-occur with an allele-specific seg-
ment copy number loss for the segment in which the breakpoint or
SNV lies. Similarly, we also constrain a breakpoint or SNV to be
duplicated only if its corresponding genome segment is duplicated.

Allele-specific variation is a novel extension of this work and
requires additional constraints. In order to assign variants to alleles,
we introduce a new binary variable matrix D 2 f0;1gðlþgÞ�2 where
db ¼ 1 indicates that the breakpoint b is in the first allele and db ¼ 0
indicates the second allele. Since the two alleles can have different
copy numbers and it is important to identify common alleles in dif-
ferent samples, we further assume that the first segment shares a
common allele in each sample on the assumption that there is un-
likely to be duplication and loss simultaneously in one segment.
Therefore, during preprocessing, we compare the copy numbers of
all alleles and order alleles so that the larger copy number corre-
sponds to the first allele and the smaller copy number to the second
allele for all samples. We therefore define matrix C 2 Z

N�ðlþgÞ�2
�0 ,

where ci;b;0 is the segment copy number of node i at the position
where a breakpoint or SNV b is located in the first allele and ci;b;1

correspondingly for the second allele. We further constrain that for
any existing breakpoint or SNV in the clone (excluding newly devel-
oped breakpoints in this branch), the breakpoint copy number
change should be smaller than or equal to the corresponding copy
number change at the breakpoint’s or SNV’s position.

cj;b;0 � ci;b;0 � cj;b � ci;b � ð2� ei;j � db þwi;j;bÞð2cmax þ 1Þ; (15)

cj;b;0 � ci;b;0 � cj;b � ci;b þ ð2� ei;j � db þwi;j;bÞð2cmax þ 2Þ (16)

cj;b;1 � ci;b;1 � cj;b � ci;b � ð1� ei;j þ db þwi;j;bÞð2cmax þ 1Þ; (17)

cj;b;1 � ci;b;1 � cj;b � ci;b þ ð1� ei;j þ db þwi;j;bÞð2cmax þ 2Þ
8i; j 2 f1; . . . ;Ng; b 2 f1; . . . ; l þ gg (18)

Structural variant and segment consistency: The copy number of a
breakpoint or SNV for each clone should not exceed the copy number
of the segment in which it is found. However, in order to integrate allel-
ic information, we only constrain the copy number of a breakpoint to
be at most the copy number of the segment of its corresponding alleles.

ck;b � ck;b;0 þ ð1� dbÞcmax ¼
Xr

s¼1

qb;sck;sþlþg þ ð1� dbÞcmax (19)

ck;b � ck;b;1 þ dbcmax ¼
Xr

s¼1

qb;sck;sþlþgþr þ dbcmax (20)

For copy numbers of mixed samples, we define W 2 Z
m�ðlþgÞ
�0 so

that wp;b is the mixed copy number of the segment accounting for
both alleles in sample p that contain the loci of a given breakpoint
or SNV b.

wp;b ¼
Xr

s¼1

qb;sðfp;sþlþg þ fp;sþlþgþrÞ (21)
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We calculate the ratio of mixed copy numbers of a breakpoint or
SNV and mixed copy number of segments as pp;b (also known as
variant allele frequency VAF):

pp;b ¼
fp;b

wp;b

(22)

We bias toward minimizing the distance between the estimated
and actual ratios (Equation (23)) by adding a regularization term
that sums the absolute differences between the two ratios for sample
p and variant b (breakpoint or SNV) among all samples and var-
iants, represented by auxiliary variable zp;b (Equations (24)–(26)):

�����pp;b �

PN
k¼1

up;kck;b

PN
k¼1

up;kðck;b;0 þ ck;b;1Þ

����� (23)

() zp;b � pp;b

XN
k¼1

up;kðck;b;0 þ ck;b;1Þ �
XN
k¼1

up;kck;b (24)

zp;b � �pp;b

XN
k¼1

up;kðck;b;0 þ ck;b;1Þ þ
XN
k¼1

up;kck;b; (25)

8b 2 f1; . . . ; l þ gg

S ¼
Xm
p¼1

Xlþg

b¼1

zp;b
(26)

2.2.3 Choice of k1 and k2

We set the regularization parameters k1 ¼ 1
2

lþgþ2r
2r

m
N and k2 ¼ 1

2
lþgþ2r

lþg

by simple formulas meant to approximately normalize for the
expected scales of R and S. In this, we follow the original TUSV
work (Eaton et al., 2018), which further established that that
method was not greatly sensitive to the selection of penalty
parameters.

2.2.4 Estimating the number of clones

Determining the number of subclones is a hard problem for which
we provide an optional heuristic. The user can preset a maximum
number of tree nodes and the method will infer a tree with the given
maximum size then collapse nodes inferred to have zero frequency
when they only have one child and collapse child nodes with zero
branch length before counting the final number of uncollapsed
clones. We also allow the user to predefine the subclone number dir-
ectly. In practice, the method can handle clone numbers up to ap-
proximately 9 before run time becomes excessive.

2.3 Mapping unsampled SNVs or breakpoints to

identified nodes
The full algorithm in principle provides a problem formulation that
we can optimize for any dataset. However, the ILP framework can
scale poorly to large numbers of variants, as may occur in highly
mutable cancers. We therefore introduce a variation on the method
in which we subsample the full set of variants for phylogeny infer-
ence and then map the remaining variants to the identified subclonal
populations derived from the subsampled data. The intuition behind
this alternative is that many variants will provide redundant infor-
mation about the phylogeny and so we should not need a large num-
ber of variants for the computationally costly step of inferring the
correct topology for the phylogeny. We can thus solve the phylogeny
more quickly on a subset of variants and then efficiently map the
remaining variants to their most likely positions on the phylogeny.

With this alternate method, we first subsample SNVs and break-
point pairs up to a user-defined maximum of each, while keeping all
CNAs. We then solve the ILP as in Section 2 to obtain an inferred

tree on the variant subset, including a tree topology and copy num-
ber profile and clonal frequency of each inferred clone. We then
map the remaining breakpoints and SNVs to edges of the tree given
their estimated copy numbers. We do not know in which allele the
remaining SNVs or breakpoints lies, but the number of possibilities
is generally small. We therefore identify the most plausible edge in
the tree at which each variant individually could have first been
acquired by enumerating over all tree edges and choosing the one
that yields the best match to the estimated copy number of that
variant.

If there were no copy number changes then the VAF implied by a
given edge would be half the sum of the clonal frequencies of all
nodes below that edge. To account for CNAs, we consider two pos-
sibilities when a variant is acquired on the same edge as a CNA: (i)
the variant was acquired before the copy number change, which
results in the actual copy number of the variant being equal to the
copy number of its corresponding segment. (ii) the variant is
acquired after the copy number change, which results in that the ac-
tual copy number of the variant in that clone being one. To account
for further copy number changes after the acquisition of a given
variant, we estimate the copy number of the variant to be the expect-
ation over possible copy numbers of its allele in descendant nodes.

The method is captured more formally in the following
pseudocode:

Input: Mixed sample copy number matrix F̂
m�ĝ

, tree T (pre-
sented as ancestry matrix An�n where Ai;j ¼ 1 if node i is the ances-
tor of node j and edge matrix En�n where Ei;j ¼ 1 if node i is the
direct parent of node j), mapping matrix Q̂

ĝ�r
which maps the

unsampled SNVs to segments, frequency matrix Um�n and compo-
nent matrix Cn�ðlþgþ2rÞ including g sampled SNVs.

Output: An assignment list AssignList1�ĝ , which shows the opti-
mal assignment of nodes for ĝ unsampled SNVs (or breakpoints).

Pseudocode:

Ĉ ¼ C:;ðlþgþdjrÞ:ðlþgþðdjþ1ÞrÞQ̂
T

C�¼ C:;ðlþgþð1�djÞrÞ:ðlþgþð2�djÞrÞQ̂
T

Ĉ
parent ¼ E>Ĉ

F
i;j;1 ¼

(U:;i � Ĉi;j þUAi;: � Ĉ :;j if Ĉi;j ¼ 1 or

Ĉi;j � Ĉ
parent

i;j > 1
1 otherwise

F
i;j;2 ¼

(
U:;i � Ĉi;j þUAi;: � Ĉ :;j=Ĉi;j if Ĉi;j > 1

1 otherwise

dopt
j ; iopt

j ¼ argmindj2f0;1g;i2f1;...;ngminfFi;j;1
; F

i;j;2g
AssignListj ¼ iopt

j

3 Results

3.1 Validation on simulated data
For validation, we first used simulated data including SVs, SNVs
and CNAs based on a pre-defined random evolutionary tree and
mutation rate. We mutate whole genome profiles for subclones of a
single patient by randomly applying structural variations with
lengths sampled from a Poisson distribution with parameter
5 745 000 bp, which is the empirical average length for the TCGA-
BRCA cohort with WGS available (Eaton et al., 2018), as well as
single-nucleotide variations at uniformly random locations. We
simulate allele-specific duplications from 2 to 6, deletions, transloca-
tions and inversions with relative probabilities of 2:2:1:1 to ensure a
relatively high rate of copy number changes. CNAs occur as conse-
quences of SVs in our model (e.g. from segmental duplications and
losses) and are not separately simulated. We also uniformly random-
ly simulate clonal frequencies for each mixed tumor sample from the
same patient. We calculate the theoretical mean copy number for
each variant in each sample as a weighted mixture of the copy num-
ber of that variant in each sample and its clonal frequency. A theor-
etical VAF is then calculated for each breakpoint and SNV, as well
as a theoretical B-Allele Frequency (BAF) for each CNA. In order to
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test robustness to noisy sequencing data, we model the read counts
rc for each segment using a Poisson random variable with parameter
of a given read depth 100, then we use a binomial random variable
to randomly simulate the read counts that contain a certain copy
number alteration, breakpoint or SNV with the probability param-
eter derived from the calculated theoretical VAF and number of tri-
als of rc in the corresponding segment.

We conduct a series of experiments to test robustness of the
method to parameter variations, simulating 10 cases for each experi-
ment. We simulate with different structural mutation rates ktotal,
which is the parameter of a Poisson distribution for the total number
of structural variants. The SNV mutation rate is set to 100ktotal. For
each simulation, we generate 1, 5 or 10 samples. We simulate the
frequency of each clone for each sample uniformly at random under
the frequency constraint and simulate final mixed samples as a
weighted sum of the profiles of each clone. We set a maximum run
time of 1000 s per iteration and a maximum of 10 iterations, except
where specially mentioned below. Each case was run with five ran-
dom initializations to minimize the risk of solutions being trapped in
local optima.

Since there is no other method to our knowledge that integrates
all three variant types, direct comparison to alternative methods is
challenging. We therefore split validation into two tasks—one
assessing performance on CNAs and one on how CNAs contribute
to reconstruction from SVs and SNVs—through which we can com-
pare to other work in the literature.

3.1.1 Task 1: validation on segment copy numbers, subclonal

frequencies and tree estimation

Here, we assume that the clone number is known and compare our
method with CNT-MD (Zaccaria et al., 2018). We also compare
with original TUSV to evaluate the improvement specifically from
the advances of the present method. Since CNT-MD also uses linear
programming for optimization but only utilizes segmental copy
numbers, we only compare the estimated copy numbers and clonal
frequencies. For fair comparison with CNT-MD, we assumed in our
simulations that only leaf nodes and normal clones can have non-
zero frequency, setting our method to the leaf-only mode to match
the assumptions of CNT-MD.

We test on different structural mutation rates from 20 to 40 with
four leaf clones, and evaluate the performance by the root mean
square error of the U and C matrices including only leaf node pro-
files and frequencies. The results show that our method can con-
verge faster with the assistance of other variants like SVs and SNVs,
showing higher accuracy in estimating both C and U matrices and
phylogenies (Fig. 2). The advantage is larger when the mutation rate
is small, which we expect may be more of an issue for CNT-MD be-
cause fewer mutations would leave it comparatively less signal from
which to deconvolve. Our method also shows superior performance
over the original TUSV method, demonstrating the power of taking
SNVs and allele-specific variants into account.

All methods have relatively poor performance for sample size 1
compared with sample size 5, suggesting the need for multiple bulk
samples for accurate clonal deconvolution. For five samples, all

methods improve substantially although TUSV-ext yields notably
higher accuracy than CNT-MD and the original TUSV (Fig. 3).

3.1.2 Task 2: validation on SVs, SNVs and numbers of clones

In task 2, we validate the deconvolution of SNVs and SVs as well as
determination of number of clones. We sample the SNVs by setting
an upper bound on the number of breakpoints and SNVs in total to
be 120. We use the average precision of the co-clustering matrix to
evaluate the deconvolution performance of both breakpoints and
SNVs, as well as the breakpoint-SNVs co-clustering. To determine
the correct number of clones, we set the maximum nodes to be 9
when running the program and collapse nodes. We use the relative
distance ðktrue � kestimateÞ=ktrue as the evaluation metric. We compare
our method with PyClone (Roth et al., 2014), which is a popular
method for inferring subclonal populations from single or multiple
samples, as well as with the original TUSV. We examined the per-
formance among different sample numbers and clone numbers with
a fixed mutation rate per branch.

We test on sample sizes 1, 5 and 10 with mutation rate ktotal ¼
30 and clone number 5. PyClone performs better than TUSV-ext
when the sample number is small. When the sample number is 5 or
10, TUSV-ext shows better result in terms of SNVs and breakpoints.
PyClone is prone to overestimate the clone number, whereas our
method is able to identify the clone number more accurately (Fig. 4).
The determination of clone number is also improved when the sam-
ple number is larger.

We then fix the mutation rate per branch to be k¼5 and sample
number to be 5 and test for different clone numbers of 5 and 7. For
larger clone numbers, resulting in larger number of total variants
including breakpoints, we found that TUSV-ext performance not-
ably degraded when using the same setting. We suspected that this
was caused by poor convergence due to the larger number of var-
iants. To test this hypothesis, we increased maximum run time per
iteration to 5000 for this case, which resulted in improved perform-
ance relative to Pyclone (Fig. 5). This result confirmed that the dis-
crepancy is due to poor convergence and that more iterations may
be needed for scenarios yielding larger numbers of variants.

3.2 Robustness analysis
In order to explore the robustness of the program, we further exam-
ined a simulation instance with 7 clones, ktotal ¼ 40, and sequencing
depth 100 with respect to four issues: subsample size, subsample,
initialization and number of iterations. We ran the scenario with 5
random subsamples, with the upper bound of breakpoints set to 80
and 120 and with the upper bound of sum of breakpoints and SNVs
to be 120 and 180, respectively. We tested three time limits of 500,
1000 and 5000 s per iteration for each subsample. For each sub-
sample and each time per iteration, we ran 5 different random starts
for 12 iterations in total and recorded the performance for each start
after each iteration (Supplementary Figs S1 and S2).

The result shows that in general, different random starts can
yield different results (Supplementary Figs S1 and S2). Picking the
best of five random starts appears effective in eliminating some trap-
ping of solutions in local minima, as suggested by the low variance

(a) (b) (c)

Fig. 2. Results on task 1 with varying mutation rates. (a) The root mean square error

(RMSE) of estimate C. (b) The root mean square error (RMSE) of estimate U. (c)

Normalized Roubinson-Foulds distance of estimated trees and true tree. All the

experiments were run with 1000 s time limit per iteration. Boxes show two quartiles

and whiskers show the rest of the distribution except for outliers

(a) (b) (c)

Fig. 3. Results on task 1 with varying sample numbers. (a) The root mean square

error (RMSE) of estimate C. (b) The root mean square error (RMSE) of estimate U.

(c) Normalized Roubinson-Foulds distance of estimated trees and true tree. All the

experiments were run with 1000 s time limit per iteration. Boxes show two quartiles

and whiskers show the rest of the distribution except for outliers
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of accuracy from different random subsamples (Fig. 6). When the
subsampling size is 120 with at most 80 breakpoints, we see no sig-
nificant difference between different random subsamples
(Supplementary Fig. S4), with performance similarly good for each
subsample (Fig. 6). When the subsampling size is increased to 180
with at most 120 breakpoints (which should include all the break-
points), we see a slight improvement in determining the clone

number (Fig. 6a). Allowing a longer time limit per iteration seems to
boost the performance significantly as well as the tree consistency
(Supplementary Fig. S6) when there are larger numbers of variants
to accommodate. Yet the best result with more variants seems to be
equivalent to the result derived from fewer variants (Fig. 6b–d). It
thus appears that one may not need a large number of variants to
identify the phylogeny accurately and using more variants may lead
to a need for more run time without any improvement in the final re-
sult, although we cannot rule out the possibility that increasing run
time further could yield improvement with larger numbers of
variants.

3.3 Application to real prostate cancer data
Gundem et al. (2015) performed whole-genome sequencing on 51
tumor samples from 10 patients and provided variant calls of SVs,
CNAs, SNVs and Indels. We selected one case from this study, pa-
tient A32, to demonstrate our method on real data. For this patient,
the study included samples from five tumor regions: (A) right rib me-
tastasis, (C) primary tumor from prostate, (D) left cervical lymph
node metastasis, (E) left subclavicular lymph node metastasis and
(F) right humerus metastasis.

Since there are many more rearrangements than SNVs, we sub-
sampled both SVs and SNVs for eight runs (approximately 80 break-
points and 40 SNVs for each run) and mapped the unsampled
variants to nodes in the phylogenetic tree. For each run, we set the
maximal node count to be 9 and set 10 iterations with time limit of
4000 s per iteration. Each run was performed with two random initi-
alizations. We also subsampled copy number segments to retain
only those with breakpoints or SNVs lying inside them to reduce the
time complexity. We used the two most similar runs, according to
the CASet and DISC metrics (DInardo et al., 2020), to identify a
consensus solution for subsequent analysis.

We compare the tree inference (Fig. 7a) with that of Gundem
et al. (2015). Both show branching evolution, yet with distinct tra-
jectories. Clone 0 identified by our method only occurs in samples C
and E with relatively low frequencies, while no comparable separate

(a) (b)

(c) (d)

Fig. 6. Evaluation of model robustness using simulated data with mutation rate

ktotal ¼ 40, 7 clones and 5 random subsamples, with an upper bound on the number

of breakpoints of 80 or 120 and an upper bound on the sum of breakpoints and

SNVs of 120 or 180, respectively. Time limits of 500, 1000 and 5000 s per iteration

were tested for each subsample. Five different random starts were conducted in each

setting with 12 iterations. (a) Accuracy of determining number of clones. (b)

Average precision of breakpoints. (c) Average precision of SNVs. (d) Average preci-

sion of breakpoints-SNVs co-clustering. Boxes show two quartiles and whiskers

show the rest of the distribution except for outliers

(a) (b)

(c) (d)

Fig. 4. Results on task 2 with different samples size. (a) Accuracy of determining

number of clones. The upper dashed line shows the best performance of accurately

predict the number of clones, and the lower dashed line shows the lower bound of

the relative distance when it reaches the maximum clone number. (b) Average preci-

sion of breakpoints. (c) Average precision of SNVs. (d) Average precision of break-

points-SNVs co-clustering. Boxes show two quartiles and whiskers show the rest of

the distribution except for outliers

(a) (b)

(c) (d)

Fig. 5. Results on task 2 with different clone numbers (or different total mutation

rate) when the mutation rate per branch remains k¼5 (a) Accuracy of determining

number of clones. The upper dashed line shows the best performance of accurately

predict the number of clones, and the lower dashed lines show the lower bound of

the relative distance when it reaches the maximum clone number. (b) Average preci-

sion of breakpoints. (c) Average precision of SNVs. (d) Average precision of break-

points-SNVs co-clustering. Boxes show two quartiles and whiskers show the rest of

the distribution except for outliers
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branch is identified in the prior work. Mutations of TP53 (K132N)
and TBLIXR (essential splice) and chr8p deletion are inferred as
early events in both inferences. Clone 6 was found to contain
CTNNB1 substitution. Clones 7 and 2 were inferred to have PTEN
and CDKN1B loss respectively, unlike the inferences in the prior
work where both PTEN and CDKN1B loss of heterozygosity were
inferred to occur early in clonal evolution.

We further examined estimated frequencies of inferred cell popu-
lations in each sample (Fig. 7b). The primary tumor (sample C)
shows notably higher clonal heterogeneity than the metastases, as
we would expect, with evidence for most clones having been present
in the primary tumor rather than evolving de novo in the metastases.
Furthermore, samples A and E are inferred to have small propor-
tions of normal cells (clone 8) while samples C, D and F have no
normal cell population. Internal nodes (clone 5, 6 and 7) exhibit low
frequencies in all samples. Most leaf nodes (clone 0–5) exhibit
higher frequencies in samples C and E and lower in samples A, D
and F, or vice versa. Clone 0, the closest child to the diploid normal
clone, is not inferred in Gundem et al. (2015). Only primary sample
C and metastasis E contain this clone and it is expanded in sample
C. Clone 4 shows higher proportion in samples C and E than A, D
and E, while clones 2 and 3 show the opposite pattern, perhaps sug-
gestive of distinct polyclonal seeding events. Our model overall sug-
gests a more complex pattern of polyclonal origins, whether through
polyclonal seeding or subsequent cell migration, than is suggested in
the prior work.

4 Conclusion

In this work, we develop a tumor phylogeny method, TUSV-ext, to
incorporate SNVs, CNAs and SVs into a single clonal lineage tree re-
construction. We show on simulated data how these variant types

can be complementary, yielding superior accuracy to competing
methods that make use of only subsets of these variants. We further
demonstrate effectiveness of the method on a real prostate cancer
dataset involving primary and metastatic samples from a single pa-
tient. One of the main challenges to the inference is scalability, as
the method so far can accommodate relatively limited numbers of
variants and potentially requires long convergence time. We offer a
heuristic solution for variant subsampling and subsequent mapping,
but the method would benefit from more principled solutions for
directly handling large variant sets as well as for estimating uncer-
tainty of tree inferences. Furthermore, even with more accurate clo-
nal reconstruction and assignment, some aspects of tumor evolution
are not fully resolvable from phylogenetics alone. Incorporating
insights from alternative approaches that capture clonal migration
(El-Kebir et al., 2018) might be needed to explain data better than is
possible by a purely phylogenetic approach such as is presented
here.
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