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Joint Clustering of Single-Cell Sequencing
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ABSTRACT

Aneuploidy and whole genome duplication (WGD) events are common features of cancers
associated with poor outcomes, but the ways they influence trajectories of clonal evolution
are poorly understood. Phylogenetic methods for reconstructing clonal evolution from ge-
nomic data have proven a powerful tool for understanding how clonal evolution occurs in
the process of cancer progression, but extant methods so far have limited the ability to
resolve tumor evolution via ploidy changes. This limitation exists in part because single-cell
DNA-sequencing (scSeq), which has been crucial to developing detailed profiles of clonal
evolution, has difficulty in resolving ploidy changes and WGD. Multiplex interphase fluo-
rescence in situ hybridization (miFISH) provides a more unambiguous signal of single-cell
ploidy changes but it is limited to profiling small numbers of single markers. Here, we
develop a joint clustering method to combine these two data sources with the goal of better
resolving ploidy changes in tumor evolution. We develop a probabilistic framework to
maximize the probability of latent variables given the pre-clustered datasets, which we
optimize via Markov chain Monte Carlo sampling combined with linear regression. We
validate the method by using simulated data derived from a glioblastoma (GBM) case
profiled by both scSeq and miFISH. We further apply the method to two GBM cases with
scSeq and miFISH data by reconstructing a phylogenetic tree from the joint clustering
results, demonstrating their synergistic value in understanding how focal copy number
changes and WGD events can collectively contribute to tumor progression.
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1. INTRODUCTION

Tumor progression occurs through a process of clonal evolution (Nowell, 1976), during which tumor

cells typically accumulate a variety of different types of genetic aberrations. Copy number alterations

(CNAs), which play a particularly vital role in how tumors adapt functionally over progression, are a common

outcome of chromosome instability (CIN) (Heng et al., 2013; Bakhoum et al., 2018). The CNAs can occur at

multiple scales, from small focal gains or losses, to gain or loss of whole chromosomes or chromosome arms,

to whole genome duplication (WGD). The WGD, in particular, is a primary driving force of aneuploidy in

tumors that is associated with poor outcomes (Van de Peer et al., 2017; Bielski et al., 2018). Characterizing

how CNAs at various scales act in tumor evolution is, thus, crucial to accurately reconstructing how tumor

genomes functionally adapt during evolution.

The reconstruction of clonal evolution in cancers from genomic data has become the subject of a field

known as tumor phylogenetics (Schwartz and Schäffer, 2017). Historically, tumor phylogeny methods have

focused primarily on evolution by single-nucleotide variants (SNVs), with mechanisms of evolution by

copy number variations seeing comparatively little attention in the tumor phylogeny literature. Letouzé

et al. (2010) used breakpoints to construct relationships between different tumors. Multiplex interphase

DNA fluorescence in situ hybridization (miFISH), a technique for measuring copy numbers of small

numbers of probes in many single cells, has been previously used to study copy number evolution in

cancers (Pennington et al., 2007; Chowdhury et al., 2013) and eventually extended to explicitly model

WGD as distinct from focal and chromosome-scale gain-and-loss mechanisms (Chowdhury et al., 2014,

2015). A particularly influential variant of copy number evolution was the MEDICC model (Schwarz et al.,

2014a), which allowed for CNAs at arbitrary scales. Later work showed the MEDICC model to be solvable

in linear time (Zeira et al., 2017) and extended to a weighted version (Zeira and Raphael, 2020).

Single-cell DNA-sequencing (scSeq) was revolutionary for tumor phylogenetics (Navin et al., 2011) and

in early versions used primarily to study evolution by CNAs, but it has not generally been used to study

aneuploidy or WGD specifically. There is so far little research on algorithms for copy number evolution

from large-scale single-cell sequencing data. The CNAs have been used as an evidence of single-nucleotide

variant (SNV) changes caused by copy number changes or simply treated as a confounding factor in studies

of SNV evolution (Satas et al., 2020). Methods have begun to appear explicitly modeling WGD events and

other large chromosomal aberrations from sequence data (Zaccaria and Raphael, 2020), but with a re-

strictive model for WGD derived from the common assumption that WGD is a one-time early event in

tumor evolution. The MEDICC (Schwarz et al., 2014b) method for CNA phylogenies has also recently

been extended to allow for explicit WGD modeling (Petkovic et al., 2021). Prior studies have suggested

that WGD may occur repeatedly in clonal evolution of single tumors (Shackney et al., 1995; Oltmann et al.,

2018). Fitting more complex models from scSeq data is problematic because of the difficulty of reliably

identifying WGD events from scSeq. Another obstacle is that scSeq data are noisy and prone to challenging

technical artifacts, which makes it hard to infer precise phylogenetic information.

The miFISH provides an alternative way to measure copy numbers of target DNA sequences at the

single-cell level for use in reconstructing clonal evolution (Pennington et al., 2007; Chowdhury et al.,

2013). The miFISH has the advantage of providing absolute copy numbers, in contrast to the relative

amounts offered by scSeq that are typically normalized with respect to ploidy. The miFISH is also scalable

to large numbers of cells at a comparatively low cost. These advantages make miFISH particularly useful

for studying ploidy changes and WGD as well as for more accurately estimating clonal frequencies.

However, miFISH tracks copy numbers only at a limited number of probes per cell, in contrast to the

whole-genome information offered by scSeq. Effective use of miFISH, thus, requires some knowledge of

which genes might be important and has limited ability to allow one to discover novel variants of im-

portance or to develop a comprehensive portrait of all variations in a tumor.

The present work is intended to make use of the complementary advantages of scSeq and miFISH for

profiling clonal evolution by CNAs at the single-cell level, with the particular goal of better capturing

WGD events and other sources of ploidy changes for which miFISH is ideal while also studying tumor

evolution at the whole-genome as scSeq allows. For this purpose, we developed a joint clustering method,

which pre-clusters each type of data to denoise single-cell copy number profiles and obtain clonal fractions,

then synthesizes them to find the best joint matching based on a biclustering likelihood function. We

applied our joint clustering method to simulated data and to two glioblastoma (GBM) cases for which both
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miFISH and scSeq datasets are available. Results from simulated data confirm that our method can

effectively jointly cluster cell populations profiled by both data types, allowing one to simultaneously

reconstruct aspects of the clonal evolution process poorly captured by each data type alone. Results from

the real GBM data demonstrate the ability of the method to successfully infer simultaneous evolution by

focal and large-scale copy number aberrations and by WGD, showing results that are consistent with

previous research on GBM (Beroukhim et al., 2007; Crespo et al., 2011) and other efforts to use miFISH to

assist the deconvolution of bulk sequence data (Lei et al., 2020a,b) while providing new insights into how

ploidy changes can drive the global evolution process in CIN tumors.

2. METHODS

The core of our contribution is a method to jointly cluster both scSeq and miFISH data gathered from

distinct single cells of a common tumor cell population. This co-clustering is posed as an optimization

problem through which we seek to identify a set of clones making up the tumor and assign each a whole-

genome copy number profile, a ploidy, and an estimated clonal frequency. We then use these inferred

clones as the input for phylogenetic inference of putative clonal lineage trees describing evolution of the

clonal cell populations in the tumor. The whole process is illustrated in Figure 1. Table 1 shows a summary

of definitions of key variables and model parameters used in defining the method.

For both miFISH (DscFISH) and scSeq (DscSeq) data, we first initialize the method by clustering each

dataset separately with a conventional clustering algorithm. Here, we explore three options: k-means

clustering, Gaussian mixture models (GMMs), and GMMs combined with uniform manifold approximation

and projection (UMAP) (McInnes et al., 2018) for dimensionality reduction. After that, we obtain the

separate cluster centers F and S and cluster frequencies ~f and ~g for miFISH and scSeq data.

We then define a joint likelihood function [Eqs. (1–3)] for the co-clustering problem. The goal of this

problem is to infer a matrix A (Fig. 2) that identifies pairs of miFISH and scSeq cluster centers that are

inferred to correspond to the same clone and assigns a clonal frequency to each such pair. An optimal

solution of matrix A then yields an estimated population frequency for the clone corresponding to each

miFISH-scSeq matched subgroup. For convenience in specifying the optimization, we also define an

indicator matrix Z, which is a 0–1 matrix where a given entry zij is 1 when the corresponding entry of aij of

A is nonzero and 0 when the corresponding entry aij of A is zero. Our goal is to find the configuration that

maximizes the likelihood function:

argmax
A‚ Z

L(A‚ Z) = P(F‚ S‚~f ‚~g; A‚ Z) (1)

= P(F‚ S; A‚ Z) P(~f ‚ ~g; A‚ Z) (2)

= P(F‚ S; Z) P(~f ‚ ~g; A)‚ (3)

where

P(~f ‚ ~g; A) =
Ym
i = 1

(
Xn

j = 1

aij)

fi
" # Yn

j = 1

(
Xm

i = 1

aij)

gj
" #

: (4)

P(~f ‚ ~g; A) shows the likelihood of the observed counts of cells in each subclone given the estimated actual

frequencies. The overall proportions of different matched subgroups should sum up to one. Therefore, we

apply the following constraint to the optimization problem:

Xm

i = 1

Xn

j = 1

aij = 1: (5)

We further used a Gaussian noise model to account for errors in estimated copy number profiles, based

on which we estimated a probability pij of observing the discrepancy between ith miFISH and jth scSeq

profiles given that they are from the same tumor subclone. The statistical meaning of a Gaussian error

distribution erf(x) is the probability of a Gaussian variable X*N 0‚ 1
2

� �
falling in the range of [ - x‚ x]. Its
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complementary function erfc(x) is used to estimate the probability pij of the observation of the difference

between the profiles given the matching of ith scFISH and jth scSeq cluster (zij = 1):

erfc(x) = 1 - erf(x) =
2ffiffiffi
p
p
Z +1

x

exp ( - t2)dt: (6)

We first normalize the miFISH cluster by half of its ploidy number, because it should always be diploid

after normalization (denoted by Fploidy). We define the extent of discrepancy between the matched clusters

given ploidy number ploidy and probe index p [denoted as (Fploidy � S)ijp in eq. (8)], specifically between

the normalized profile of ith miFISH cluster at a specific probe p (denoted as 2Fi‚ p=ploidy) and jth scSeq

cluster at the probe position [denoted as Sj‚ ProbeIndices(p)] as the absolute distance. And then we apply the

complementary Gaussian error function on it as an assessment of probabilities at every probe over all

probable ploidy 2 [1‚ 2‚ . . . ‚ 8] for miFISH cluster profile [eq. (9)] and choose the maximum proba-

bility as the final probability of matching clusters.

F
ploidy
i‚ p =

2Fi‚ p

ploidy
(7)

(Fploidy � S)ijp =
2Fi‚ p

ploidy
- Sj‚ ProbeIndices(p)

����
����‚ (8)

pij = max
ploidy

Y
p

erfc
1

r
(Fploidy � S)ijp

� �" #
: (9)

FIG. 2. Matrix A, which is the primary output of the co-clustering algorithm and identifies a set of inferred clones,

each with corresponding miFISH and scSeq data, and their inferred population frequencies. Each nonzero entry aij

indicates an inferred matching between the ith miFISH cluster and the jth scSeq cluster, proposing that they each at

least in part derive from a common clone with clonal frequency aij. Zero entries of A indicate no such matching. Here, fi
and gj are the frequencies of the pre-clustered miFISH cluster center i and scSeq cluster center j separately.

Table 1. Parameters and Constants for Joint Clustering

Notation Meaning

Am · n aij is the estimated frequency of the joint cluster of ith cluster of miFISH and jth cluster of scSeq

Zm · n zij is a 0–1 indicator for aij

Fm · l Fi‚ p is the miFISH profile of ith pre-cluster at FISH marker p

Sn · k Sj‚ q is the scSeq profile jth pre-cluster at genome position q
~f m · 1 fi is the miFISH frequency of ith pre-clusters

~gn · 1 gj is the scSeq frequency of jth pre-clusters

Pm · n pij is the probability matrix for matched clusters of ith miFISH and jth scSeq pre-cluster

Probe-Indicesl · 1 The list of whole genome profile indices at FISH marker positions

m The number of miFISH clusters

n The number of scSeq clusters

l The number of FISH markers

k The number of genome features

FISH, fluorescence in situ hybridization; miFISH, multiplex interphase fluorescence in situ hybridization; scSeq, single cell DNA-

sequencing.
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r can be used to model the expected noise level of the sequence data, effectively regularizing the weight

placed on the noise model relative to the likelihood of the clonal frequencies given the scSeq and fluo-

rescence in situ hybridization (FISH) data. Larger r means a more flatten curve of error function, where the

matching can allow more randomness, whereas smaller r sharpens the curve, which confines the matching

more strictly depending on the difference.

The overall probability P(F‚ S; Z) is estimated by the product of the probability pij where zij = 1.

P(F‚ S; Z) =
Yn

i = 1

Yn

j = 1

p
zij

ij : (10)

Therefore, the log likelihood function used for actual optimization is

l(A‚ Z) = log L(A‚ Z)

=
Xm

i = 1

fi log (
Xn

j = 1

aij) +
Xn

j = 1

gj log (
Xm

i = 1

aij) +
Xm

i = 1

Xn

j = 1

zij log pij: (11)

We used Metropolis-Hasting sampling to sample the likelihood function (Algorithm 1). Because of the

large search space for A, the sampling method is broken into two steps. First, it randomly samples a

configuration given the previous configuration, based on a heuristic distribution. Then, it seeks to estimate the

real-valued frequencies of the non-zero elements of probability matrix A so that the given observation of

frequencies for separately clustered scFISH or scSeq subclones is most likely, that is, to maximize the

likelihood function �L(A) = P(~f ‚~g; A). Applying the Metropolis criterion to the likelihood ratio of L(A‚ Z) and

the proposal probability of the current sample and the previous sample, we are able to obtain a partial sample

of the likelihood function from which we identify the configuration of A yielding the maximum likelihood.

In the Metropolis-Hasting sampling, we use the log-likelihood function �l(A) in our implementation when

solving for the most probable matrix A given indicator Z in the second step (eq. 12), where we adopt a

regression model to estimate the parameters:

max �l(A) = log �L(A)

=
Xm

i = 1

fi log
Xn

j = 1

aij

 !
+
Xn

j = 1

gj log
Xm

i = 1

aij

 !
:

(12)

s:t:
Xm

i = 1

Xn

j = 1

aij = 1: (13)

Algorithm 1: Algorithm to match single-cell sequencing and single-cell FISH subgroups and identify frequencies of

each matched subclones using Metropolis-Hasting sampling

Input: matching probabilities P, miFISH pre-clustered profiles F and frequencies ~f , scSeq pre-clustered profiles S and

frequencies ~g, probe indices list ProbeIndices

Output: indicator matrix Z(maxiter) and corresponding matching matrix A(maxiter)

Randomly initialize Z(0)

for t in 0 : maxiter do

Z = Z(t)‚ A = A(t)

Sample Z�*Prop(Z 0jZ)

Sample u * U[0‚ 1]

Solve A� for optimization problem for max �l(A) based on non-zero entries indicator matrix Z�

if u < min 1‚
L(A�‚ Z�)Prop(ZjZ�)
L(A‚ Z)Prop(Z�jZ)

� 	
then

Z(t + 1) = Z�‚ A(t + 1) = A�

else

Z(t + 1) = Z‚ A(t + 1) = A

end if

end for
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The estimated pij is also used for derivation of a transformation distribution as a proposal distribution

Prop(Z 0jZ) during the sampling [Eqs. (14–17)]. The proposal distribution is used to sampling a position in

the matrix to either increase or decrease a non-zero entry depending on the Z matrix in the previous

step. We utilized a multinomial distribution with the parameters of normalized Gaussian error probabilities

in each entry. Let p̂ij be the probability of Z of the previous step, where p̂ij = �pij if the corresponding entry of

Z is 0 and p̂ij = 1 - �pij if the corresponding entry of Z is 1.

�pij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

ijPm
i0 = 1 pi0j

Pn
j0 = 1 pij0

s
‚ (14)

�pij)
�pijPm

i0 = 1

Pn
j0 = 1 �pi0j0

‚ (15)

p̂ij = �pij1zij = 0 + (1 - �pij)1zij = 1‚ (16)

transition probability of Z 0jZ*
Mult(mn‚ ~p = (p̂11‚ p̂12‚ . . . p̂21‚ . . . p̂ij‚ . . . ‚ p̂mn)): (17)

3. RESULTS

3.1. Validation on simulated data

We began our validation with simulated data to provide a comprehensive test of accuracy and model

robustness on data of known ground truth. We first sought to evaluate the impact of different choices for

existing pre-clustering methods for scSeq copy number data. We tested two different aspects of this

issue: how well a method can identify the cluster number, and how well it can recover the true subclonal

information. We test the first aspect by using different criteria for determining cluster number for

different clustering methods. We generated miFISH and scSeq data by creating a series of model trees

following (Zafar et al., 2019) and then separately simulating both data types from the common tree. This

was repeated for 20 simulations of both scSeq and scFISH simultaneously with different tree structures

and also different copy number mutations with mutation rate c. We tested the methods by using

c = 10‚ 20‚ 30 to check the sensitivity for mutation rate (See Supplementary Methods S1 for more

details on the simulation protocol.).

We used the measure kestimate - kgt to evaluate the relative performance of different pre-clustering

methods. We considered k-means, GMMs, and GMMs with UMAP feature reduction. The combination of

UMAP and GMM proved superior at determining cluster numbers for both miFISH and scSeq across three

mutation rates considered, with k-means generally somewhat better than GMM without UMAP (see

Supplementary Fig. S1 for details).

We also tested the ability of each method to recover the true profiles of the cluster centers. Root mean

square deviation of the copy number profiles and frequencies compared with the ground truth profiles and

fractions were used for identifying the accuracy of clustering the single-cell copy numbers with different

dimensions. By this measure, k-means proved the most successful method for both reconstructing the

subclone profiles and estimating frequencies across mutation rates and data types. The GMM alone was

generally superior to GMM+UMAP for miFISH data but inferior to scSeq (see Supplementary Fig. S2 for

details).

We next applied the method to a test of the ability to draw correct inferences in the face of data noise.

We examined two simulation cases: one in which miFISH data are error-free, which means that the ground

truth miFISH profiles are the same as the scSeq profiles on their shared markers except in that they are not

normalized by the ploidy. The other assumes that errors in miFISH probe counts are modeled by normal

random perturbations in marker counts. We used precisions and recalls of the identified matchings as the

evaluation matrix. The separate subclone profiles and fractions are obtained with three different pre-

clustering methods applied to both single-cell data types. We also tested the method with the input of

ground truth fractions and profiles for comparison. We further varied the mutation rates c and a scaling

factors r used by the Gaussian error function to set sensitivity of the method to presumed noise in copy

number estimates. The simulation is repeated 40 times for each set of parameters.
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The overall results show that this method can identify matchings between the miFISH and scSeq

measures of common subclones with high precision provided the pre-clustering is accurate (Figs. 3 and 4).

Different pre-clustering methods affect the recalls and precisions to different extents, which are largely

related to the way how the data are actually distributed. Joint clustering with the data pre-clustered by

k-means yields similar results to joint clustering from the ground truth subclonal information, which is

consistent with the prior observation that k-means is the most effective of the clustering methods considered

a

b

c

d

FIG. 3. Results from noise-free simulation data. Recalls and precisions are calculated from 40 sets of simulation data, each

with different mutation rates c = 10‚ 20‚ 30. The method was applied with different parameters r = 0:5‚ 1‚ 2 with

iterations = 50‚ 000. The simulated cluster number is 9. The structure is randomly generated. The inputs of the method are

scFISH and scSeq profiles clustered by (a) k-means, (b) GMM, (c) UMAP+GMM (spherical for scSeq and diag for scFISH),

and (d) ground truth profiles. In simulation, the copy number changes are not normalized. The perturbation rate is 0.05 for

scSeq and 0.1 for miFISH. GMMs, Gaussian mixture models; UMAP, uniform manifold approximation and projection.
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at recapitulating the ground truth cluster assignments. We observe a decrease in performance when adding

a noise model to miFISH counts relative to noise-free data, but the method is still able to jointly cluster both

data types with a fairly good accuracy. Little sensitivity is observed to varying scaling factor in both cases,

suggesting that Gaussian error function can give a good estimate of the joint generative probability even

without a very precise estimate of the true data noise level.

Variations in mutation rate do produce larger changes in outcomes. Simulation data with low mutation

rates tend to have lower recalls and precisions, mainly because low mutation rates make it more difficult to

get a good pre-clustering where all the generated clusters are well distinguished. Also, lower mutation rate

means a lower probability for the copy numbers at the FISH marker positions to be altered, resulting in less

a

b

c

d

FIG. 4. Results from noisy simulation data. We use the same simulation protocol as in Figure 3, except that there is

noise added to the ground truth scFISH data at markers sites with �*N (0‚ 0:3). Subfigure labels are defined identically

to those in Figure 3.
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distinct FISH subclones, which, in turn, introduces more imprecision during the joint clustering since no

significant features can be identified. In the real data, FISH markers are usually selected based on prior

knowledge of the particular tumor type. Therefore, even if the overall mutation rate is low, the FISH gene

markers are still generally distinguishable in real single-cell tumor data. Also, although we set the number

of markers to be 8, as in the available real data, miFISH can accommodate larger numbers of markers, with

potential for improved ability to distinguish miFISH clusters and match them accurately to scSeq clusters.

3.2. Application to two GBM cases

We apply our method to two real GBM samples each taken from three tumor regions of a patient for

whom scSeq and miFISH are available. One data set, GBM07, includes 202 single cells for sequencing and

450 single cells for FISH. The other, GBM33, includes 208 single cells for sequencing and 450 single cells

for FISH in total (Wu et al., 2016). Each scSeq cell profile contains 9934 copy number features, re-

presenting copy numbers of consecutive regions spanning the whole genome. The FISH data contain copy

numbers of the following gene markers: PDGFRA (4q), APC (5q), EGFR (7p), MET (7q), MYC (8q),

CCND1 (11q), CHEK1 (11q), and ERG (21q). Both the miFISH and scSeq data can be inaccurate when the

copy numbers are extremely high. Therefore, copy numbers over 20 for scFISH data and 10 for scSeq were

manually capped to those upper bounds.

We first post-process the joint matching results by matching the clusters and calculating estimated

pseudoploidies. Possible pseudoploidies that indicate the potential ratios between normalized scSeq at

markers and miFISH profiles are calculated based on the matched pairs of clusters.

pseudoploidyij = medianp

2Fi‚ p

Sj‚ ProbesIndices(p)

: (18)

where ith miFISH cluster and jth scSeq cluster are matched and p is the index of the FISH marker.

The actual whole genome copy number profile for each joint cluster is calculated by unnormalizing the

scSeq profiles with the pseudoploidy.

The estimated real ploidy for each joint cluster and internal nodes is then computed by taking the mean

of the copy numbers and rounding to the nearest integer. We then infer a branch to be WGD with a heuristic

criterion based on the model that ploidy changes tends to follow a pattern of increase through doubling

followed by reduction through cascading focal deletions. Under this model, we interpret ploidy change

2!4 as WGD, 2!3 as WGD followed by ploidy loss, 3!4 as ploidy loss followed by WGD, 3!5 as

WGD followed by ploidy loss, 4!6 as ploidy loss followed by WGD, and 4!8 ss WGD.

Sunnormalized
ij = Sj · pseudoploidyij (19)

ploidyij = round(mean(Sunnormalized
ij )): (20)

Because of the high dimensionality of the scSeq data and the high noise of both types of single cell data,

we use UMAP for feature reduction and then apply GMM and use Bayesian information criterion (BIC) to

identify the optimal numbers of clusters for both data types, as shown in the simulation results. k-Means

was then utilized to cluster both single-cell data given the optimal cluster numbers inferred via UMAP and

GMM. We then applied our method to the pre-clustering results.

Figure 5 shows the inferred frequency matrices A for the two samples. At a high level, we observe clonal

heterogeneity in both data sets with a few dominant clones together with a larger number of minor clones.

We observe substantially more heterogeneity in GBM07 versus GBM33, reflected in a larger number of

cluster centers by both data types, more diverse copy number aberrations in general, fewer widely shared

mutations across clones, and a larger number of relatively rare clones inferred, consistent with our prior

study of these data (Lei et al., 2020a). GBM33 also still keeps a relatively large diploid normal cell cluster,

whereas GBM07 has a very small diploid normal cell cluster. Both, however, experience diverse

chromosome-scale copy number aberrations.

To evaluate the utility of the clustering for tumor phylogenetics and assess its implications on clonal

evolution, we apply MEDICC2 (Petkovic et al., 2021), which derives a clonal phylogeny of supplied clones

and infers CNA profiles of ancestral internal nodes.

Figure 6a shows trees for the inferred centers of the joint clustering for GBM07. (The cluster centers

themselves are visualized in Supplementary Fig. S3a.) For GBM07, the joint clustering and subsequent tree
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a

b

FIG. 5. The estimated frequency matrix A for GBM data sets (a) GBM07 and (b) GBM33. The last row and last

column represent the fractions from separate clustering of scSeq and miFISH, respectively. GBM, glioblastoma.
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inference suggests nine possible WGD events. Some of these may reflect errors in phylogenetic inference,

although we would expect MEDICC2 to find a reasonably parsimonious explanation of the data. The most

dominant individual clones are a diploid lineage inferred to have no ancestral WGD (6-0-diploid) and a

tetraploid lineage inferred to have one ancestral WGD (2-1-tetraploid). Several more minor lineages show

evidence of independent WGD events, and several individual clones show evidence of multiple WGD

events along their evolution.

It has been shown in different cancer types that WGD can touch off a cascade of other copy number

gains and especially losses (Zack et al., 2013). This pattern of WGD followed by cascading focal CNAs

was previously inferred to be the source of patterns of triploidy and subsequent hexaploidy or pentaploidy

a

b

FIG. 6. GBM07 (a) and GBM33 (b) clonal lineage trees inferred from the joint cluster centers (normalized clusters

profiles of scSeq multiplied by estimated pseudoploidies). The names of each leaf are in the form of normalized scSeq

cluster index—scFISH cluster index—estimated ploidy. The diameter of the tip circle represents the fraction of the cell

type among all the cells. The red branches show possible WGD events. The purple branches show possible WGD

combined with ploidy loss. Stars show inferred WGD events. The inference was performed with scaling factor r = 1 and

k-means preclustering. Diploid node is the diploid root node. WGD, whole genome duplication.
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observed in prior studies of aneuploid tumors (Oltmann et al., 2018). These mechanisms explain the observation

of triploid or heptaploid subclones, which we interpret to have likely resulted from massive copy number losses

after a WGD event. For comparison, Figure 7a and b shows trees for the scFISH-only and scSeq-only clusters

for GBM07, the former identifying some of the same major focal events but without capturing the global

patterns of whole-genome variation and the latter yielding a quite different tree topology uninformed by WGD.

Examining the clusters in more depth shows copy gain of PDGFRA in the early branching 4-14-diploid

cluster, before an early WGD in almost-euploid lineage, resulting in a tetraploid lineage (4-12-tetraploid

and 4-2-tetraploid), suggesting that amplification of PDGFRA was an early event in the GBM. This

conclusion is also suggested by the fact that most of the clusters have large copy numbers of PDGFRA.

Whole chromosome 9 gain and chromosome 9p loss is a one common feature of blue-yellow-green lineage,

also suggesting that these are early events. High amplification of PDGFRA is the common characteristics in

the yellow-green lineage. Whole chromosome 11 loss and intermittent copy number gains in chromosome

11 are found in almost all of the subclones in yellow lineage. The diploid subtree of this lineage experi-

ences a whole chromosome 8 gain during development, and 0-5-diploid has a unique whole chromosome 2

gain. It is inferred that one WGD event happens in a relatively early stage and subsequent WGDs later in

the blue, yellow, and green lineages. Subclone 5-6-tetraploid has a unique whole-chromosome 21 and 22

gain. Other large-scale genome copy number aberrations are observed, such as loss of whole chromosome

10 and either whole chromosome loss of 15 or gain of whole chromosome 17 observed in subclones from

the blue and green lineages, demonstrating substantial intra-tumor heterogeneity in copy number variations

(Fujisawa et al., 2000; Beroukhim et al., 2007; Crespo et al., 2011).

Figure 6b shows the trees for the inferred centers of the joint clustering for GBM33. (The inferred cluster

centers themselves are visualized in Supplementary Fig. S3b.) Although there is substantially less clonal

heterogeneity than for GBM07, there are still four WGD events inferred in subclonal populations for

GBM33. There is a major apparently normal clone (1-1-diploid) identified. Losses of whole chromosome

21; loss of chromosome 4p, 5q, 9p, 14p, and 18p are among the large-scale copy number mutations in the

early stages of development (Supplementary Fig. S3b and Fig. 6b) before the first WGD. As with GBM07,

it is possible the data could be explained by other trees but there is no plausible explanation that would not

require multiple WGD events, including multiple events along single lineages to account for octaploid and

hexaploid clones. 5-6-Diploid has a unique chromosome 3p loss, and a common chromosome 12p loss is

identified in the blue-yellow lineage. Whole chromosome 13 loss was identified in blue and green lineages.

These chromosomal aberrations are consistent with previous studies on GBM (Beroukhim et al., 2007).

For comparison, we provide trees for the scFISH-only and scSeq-only clusters for GBM33 as Figure 7c

and d, with each lacking some features of the inferred pattern of clonal differentiation only observable by

the combination of the two data types. Despite the differences between them, both tumors show some

common features. Both show substantial clonal heterogeneity. They show a common amplification of

PDGFRA as an early and important event in GBM genesis. Both GBM07 and GBM33 show different copy

number gains in the early stages, exhibiting behavior consistent with the proneural subclass of GBM

(Verhaak et al., 2010). Also, there are observations of common chromosome-scale copy number aberrations

among both cases, such as the loss of chromosomes 4p and 9p.

One distinct feature for both cases compared with previous related studies (Lei et al., 2020b) is that the

present study inferred a larger number of WGD events than that prior work. This might be the result of very

low fractions of the tetraploid or octaploid subclones compared with major diploid subclones, which the

present work can detect, whereas the prior works depends on deconvolution with bulk data as well, an

approach that is only sensitive to relatively frequent subclones.

4. DISCUSSION

Single-cell technologies, including scSeq and miFISH, are becoming more widely used in tumor studies

because they can capture intra-tumor heterogeneity with much finer grain than older bulk genomic

methods, yet these technologies still bring technical challenges. We proposed a method combining both

scSeq and miFISH for improved clonal inference from copy number mutations by leveraging the relative

advantages of each technology. Results on simulated data show that the combination can achieve high

accuracy in capturing both the whole-genome variant data of scSeq and better resolution for ploidy

variations offered by miFISH.
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FIG. 7. GBM clonal lineage trees from miFISH or scSeq data alone. GBM07 clonal lineage trees inferred from the (a)

miFISH and (b) scSeq cluster centers. GBM33 clonal lineage trees inferred from the (c) miFISH and (d) scSeq cluster

centers. miFISH trees are produced by FISHtrees (Gertz et al., 2016) and scSeq trees via MEDICC2 (Petkovic et al.,

2021). For miFISH trees, the red branches show possible WGD events and green branches focal changes. For scSeq

trees, the diameter of each tip circle represents the fraction of the cell type among all the cells. The inference was

performed with scaling factor r = 1 and k-means preclustering. The node labeled ‘‘diploid’’ is a presumed diploid root

node.
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We also apply our method to two GBM cases and demonstrate the ability of the joint data to reconstruct a

more comprehensive model of clonal heterogeneity in these cancers. Application of the cluster results in

clonal tree inference reveals a model of focal copy number aberrations occurring alongside repeated

chromosome-scale and WGD mutation events. Consistent with our prior analysis of these data sets (Lei

et al., 2020a) and earlier models of persistent CIN (Storchova and Pellman, 2004), we find that WGD is not

a one-time event but rather an ongoing process in these tumors that may act on distinct lineages or multiple

times in single-cell lineages within a tumor. In fact, the present method, which offers a higher sensitivity for

the detection of relatively rare clones than prior approaches to WGD-sensitive clonal inference, suggests an

even greater activity of these mechanisms. Given the apparent importance of these events in touching off

cascades of rapid clonal evolution, the results confirm the crucial importance of incorporating accurate

models of CNAs at all scales into tumor evolution studies and the value of integrating multiple data

sources, notably miFISH or similar methods, in that process.

This work can be further extended in some aspects. First, the model can be modified to be adaptable for

noisy single-cell whole-genome sequencing and miFISH data with different types. Currently, there is a lack of

computational tools that are able to cluster high-dimensional whole-genome copy numbers of single tumor

cells with high accuracy. Better pre-clustering for both scFISH and scSeq for copy numbers could improve

the accuracy for joint clustering. Second, the model is computationally expensive and prone to converge to

local optimum for highly heterogenous tumors. Markov Chain Monte Carlo (MCMC) sampling combined

with a prior distribution on the indicator matrix Z or other techniques might be applied to speed up the

algorithm and get global optimum. Moreover, the incorporation of other types of data from different bio-

technologies can provide evidence for single cells from different sources to be grouped together. Alternative

ways of measuring absolute ploidy may have advantages over miFISH, such as facilitating clinical appli-

cation, despite tradeoffs. Integration of other types of genome aberrations such as SNVs and structural

variations (SVs), as well as other genomic data, such as RNA-seq or epigenetic data, could help us develop

more accurate and comprehensive models of clonal evolution and its connections to cellular phenotypes.
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