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KEY POINTS

• Common genomic technologies include micro-
arrays, RNAseq,DNAseq, and sequencing tech-
nologies for characterizing epigenetic and
regulatory status.

• Principalusesofmachine learning (ML) incancer
genomics to date have included tumor subtyp-
ing, driver gene/mutation discovery, biomarker
identification, and pharmacogenomics.

• Major challenges for applying ML to cancer
genomics include difficulties of data

acquisition, data sparsity, inter- and intra-
tumor heterogeneity, and validation of ML-
derived biomarkers.

• Important current issues for the field include
development of methods for clinical applica-
tion of whole-genome sequencing and single-
cell sequencing, interpretable ML for
oncology, and increased training in genomics
and ML for healthcare professionals.

Introduction

Thirty-two years separated the development of the first DNA sequencing technology using
primer extension in 1971 and the sequencing of all 3 billion nucleotides in the human genome
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as part of the HumanGenome Project in 2001 (Lander et al., 2001; Venter et al., 2001), completed
at an estimated cost of 2.7 billionUS dollars. Less than 20 years later, the estimated cost ofwhole-
genome sequencing (WGS) crossed the milestone of <$1000 per genome (Nakagawa & Fujita,
2018), with some startups offering direct-to-consumer WGS for $299 in 2020 (https://nebula.
org/whole-genome-sequencing/). The rate of decline in cost has been driven by tremendous ad-
vances in next-generation sequencing (NGS) technologies, some of which have been repurposed
to interrogate genome-wide gene expression (transcriptomics), methylation and chromatin sta-
tus (epigenomics), splice variants, andmore (Lappalainen et al., 2019). The increased availability
of sequencing technologies has led to a plethora of multi-omic data in clinical research. The
complexity of these data is compounded by high intra-tumor (McGranahan & Swanton, 2015)
and inter-tumor (Kornelia, 2007) heterogeneity requiring advanced computational analysis
and data mining tools to identify reproducible and clinically actionable patterns in the presence
of multiple hypothesis testing on the order of 106e109 per phenotype. This challenge is being
addressed by bringing together biological/clinical science with the computational sciences.
Advances in machine learning (ML) have shown particular promise to address many of the
limitations ofmore conventional statistical analyses by facilitating the identification of sparse sig-
nals in large, noisy data and predicting outcomes potentially with no a priori hypotheses or
assumptions about data distribution (Leung et al., 2016).

Oncology has thus far been at the forefront of the genomic revolution, with large-scale pro-
jects identifying both germline and somatic variants and transcriptomic signatures to predict
cancer risk (van’t Veer et al., 2002, 2003), subtype histologically similar but clinically distinct
cancers (Dawson et al., 2013; Nielsen et al., 2010; Parker et al., 2009), predict tumor response
to therapy (Sicklick et al., 2019), identify driving mutations (Lawrence et al., 2014) and path-
ways (Vandin et al., 2012; Vogelstein et al., 2013), and nominate novel therapeutic targets
(Goldman & Melo, 2003; Paez et al., 2004). This effort has been facilitated by large-scale com-
munity efforts at data generation, including The Cancer Genome Atlas (Weinstein et al., 2013)
and the International Cancer Genome Consortium (Hudson et al., 2010) among others. Aside
from tumor classification and characteristics, oncology has also been a driving force in the
field of pharmacogenomics (Evans & Relling, 1999; Relling & Evans, 2015), aimed at explain-
ing and exploiting inter-patient variability in drug response by interrogating, for example,
variants influencing the function of enzymes and transporters in pharmacokinetic pathways.
Around 40% of the w400 drug-gene pairs on FDA labels are for oncological drugs, most of
which were discovered using candidate gene approaches and conventional statistical
methods prior to genome-wide interrogation and ML techniques. Furthermore, most are
rarely used routinely in clinical settings, highlighting what is arguably the most significant
challenge facing the field d translating cancer research into clinical implementation.

The promise of integrating ML with large scale multi-omic databases is only starting to
come to fruition as costs of data collection decline and the baton is passed to data analytics.
Today, the cost of sequencing, at least of bulk tumors, is no longer a significant obstacle to
making precision genomic medicine a routine part of cancer treatment, but the computational
tools and expertise to make use of these data in the clinic are still lacking. In this chapter, we
will give a brief overview of sequencing technologies and discuss the promises of ML in
deriving clinical utility from these data. We will also review some current applications and
successful examples of clinical biomarkers and conclude by addressing some of the hurdles
that remain as well as future directions.
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Overview of genomic technologies

The study of the molecular basis of cancers has been revolutionized by the rise of genomic
technologies, which has made it possible to observe genetic and genomic variations that
cause cancer in unprecedented scale and detail (Lappalainen et al., 2019). From early methods
that first made it possible to study bulk tumors at a whole-genome scale (DeRisi et al., 1996)
to modern innovations for profiling large numbers of single cells (Navin et al., 2011; Suvà &
Tirosh, 2019), new genomic technologies have found some of their most prominent uses in
cancer research. Changes in genomic technologies have gone hand-in-hand with advances
in our understanding of cancer and our increasing appreciation for the important roles of
intratumor heterogeneity, biological systems and networks, and complex somatic mutation
processes in understanding how cancer develops and progresses and how it might better
be treated and monitored. In this section, we survey some of the genomic technologies
that have been most influential in driving new directions in cancer treatment and research.

Microarrays

One of the basic data types for characterizing tumor genomics is gene expression data,
which quantifies the number of transcripts present for different genes or gene isoforms in
a sample. Microarrays proved the first technology for profiling gene expression on a scale
of whole-genomes and large patient cohorts. While sequencing-based methods for gene
expression profiling preceded microarrays (Adams et al., 1991; Velculescu et al., 1995),
they were initially far too costly to adapt at large scale. Microarrays were developed as a plat-
form enabling more efficient profiling of activities for potentially large numbers of genes or
transcripts simultaneously (DeRisi et al., 1996). The basic technology consists of a slide deco-
rated with a series of “spots” each defined by a DNA sequence and used to capture comple-
mentary sequences from a genomic sample. By measuring relative intensities of fluorescent
probes attached to these complementary sequences, usually in comparison between a sample
and a control, a microarray makes it possible to estimate fold changes in gene expression
levels. While most commonly used for protein-coding genes, microarrays could also be
used to profile microRNA expression or expression of other non-coding sequences (Nelson
et al., 2004). However, this technology had some important disadvantages, such as a high
noise level, an ability to profile only previously known sequences, and a limitation to
measuring relative rather than absolute expression levels (Tinker et al., 2006). Nonetheless,
its excellent scalability, eventually allowing on the order of a million parallel assays per
microarray at low cost, made it a crucial technology for bringing whole-genome analysis
into widespread use.

Microarrays found numerous important applications in early cancer genomic studies.
Microarrays were crucial to early whole-genome expression profiling of tumors, and in the
process led to the development of expression-signature-based definitions of tumor subtypes
(Perou et al., 2000) that helped to reveal how clinically similar tumors might arise from very
different molecular mechanisms and how this recognition could lead to improved prognostic
prediction (van’t Veer et al., 2002, 2003). They also facilitated systems biology approaches to
identifying networks and pathways implicated in particular tumors and thus identify poten-
tial therapeutic targets. While subtyping is continually being refined, more sophisticated
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variants of the subtyping arising from the early microarray-derived models remain in com-
mon use today.

While microarrays were most widely employed as a technology for expression profiling,
they also found important use as a means of profiling DNA variations. “SNP chips” provided
an early way to efficiently test for many known genetic variants in parallel (Gunderson et al.,
2005). SNP arrays can also be used to perform a coarse-grained form of copy number alter-
ation (CNA) analysis (Dumur et al., 2003). Copy number arrays of this kind were also influ-
ential in developing some of the first efforts at profiling subclonal variation in cancers
through regional profiling of bulk copy number variation (Navin et al., 2010).

While microarrays are still used for RNA expression profiling, SNP genotyping, and DNA
copy number analysis, they have been largely displaced in practice by sequencing technolo-
gies described below, as well as by more specialized alternatives not covered here, such as the
Nanostring platform (Kulkarni, 2011), that may allow different tradeoffs of accuracy, scale,
and cost.

RNA-seq

Expression microarrays have been largely superseded in practice by RNA sequencing
(RNA-seq) as a technology for profiling gene expression. In RNA-seq, one isolates RNA
from a sample and derives the sequences of large numbers of putatively randomly-selected
fragments from the resulting RNA transcripts, which can then be mapped back to a genome
to infer expression levels at gene, transcript, exon, or even single-base resolutions (Mortazavi
et al., 2008). Variants of RNA-seq have been available essentially since automated Sanger
sequencing technology first came into in widespread use (Hunkapiller et al., 1991), for
example in the use of expressed sequence tags (ESTs) in many early gene expression studies
(Adams et al., 1991), but they were long cost-prohibitive for widespread use, particularly for
large cohorts. “Next-generation” sequencing technologies (Metzker, 2010) combined with
new computer algorithms for interpreting much larger volumes of genomic data (Li & Dur-
bin, 2009) greatly reduced the cost of RNA-seq, and these costs have continued to fall as tech-
nologies have advanced. While the data from RNA-seq is typically used similarly to that from
microarrays, RNA-seq offers a number of technical advantages that led to its widespread
adoption once costs became manageable. These advantages include greater accuracy, abso-
lute rather than relative quantification, finer resolution, and ability to perform novel tran-
script discovery.

RNA-seq has been widely adopted for cancer genomics, notably as one of the standard
technologies for some of the largest community sequencing efforts to date, such as The Can-
cer Genome Atlas (TCGA) (Weinstein et al., 2013) and the International Cancer Genome
Sequencing Consortium (ICGC) (Hudson et al., 2010).

More recently, cancer genomics has been greatly influenced by the advent of single-cell
RNA-sequencing platforms. Similar to bulk RNA-seq, single-cell RNA-seq (scRNA-seq)
was quickly appreciated for its value to cancer genomics and drove seminal studies into sub-
clonal heterogeneity in expression programs (Patel et al., 2014), mechanisms of expression
variation implicated in metastasis (Tirosh et al., 2016), immune infiltration (Chung et al.,
2017; Zheng et al., 2017), and other forms of stromal contamination. As technologies have
matured, its advantages over bulk sequencing have led to widespread adoption. While large

3. Machine learning applications in cancer genomics44

I. Fundamentals and overview



public repositories of single-cell cancer genomic data are not yet available on the scales of the
TCGA or ICGC, scRNA-seq has become a core technology for other large efforts to profile
cell-to-cell expression variation more systematically (HuBMAP Consortium, 2019). Other
innovative uses of scRNA-seq with a particular value for cancer genomics include various
technologies for spatial transcriptomics, in which one profiles expression mapped to spatial
regions in tumor or stroma in situ (Ståhl et al., 2016).

DNA-seq

DNA sequencing (DNA-seq) has also become a key tool for cancer genomic studies.
Genome sequencing has been a crucial enabling technology for all modern work in cancer
genomics, making it possible to identify cancer-associated genes from genome-wide studies
and map them reliably to specific genomic regions. This has facilitated discovery and typing
of genetic variations genome-wide, including structural variations implicated in many can-
cers, and provided reference genomes typically used in interpreting RNA-seq and other
genomic data sources. As DNA-seq became cost-effective to perform at large scale, it has
proven particularly valuable for cancer genomics, where it has enabled the systematic
profiling of the highly idiosyncratic somatic mutation burden characteristic of most cancers.
DNA-seq can be used to identify and quantify many variant types, including single nucleo-
tide variants (SNVs), copy number alterations (CNAs), and various kinds of structural vari-
ations (SVs), making it far more versatile than early array methods for typing somatic
variation. DNA-seq, has therefore become a standard part of large cancer genome sequencing
efforts (Hudson et al., 2010; Weinstein et al., 2013) and is now finding important uses in clin-
ical practice (Gagan & Van Allen, 2015).

DNA-seq comes in many variants, often with tradeoffs in practice. Most cancer genomic
studies and clinical uses of DNA-seq are still limited to whole-exome sequence (WES)
(Weinstein et al., 2013), or to more limited targeted sequencing (Bybee et al., 2011). Recent
studies using whole-genome sequencing (WGS) have, however, provided a great deal of
insight into structural and non-coding variations unavailable to WES (Li et al., 2020; The
International Cancer Genome Consortium et al., 2020), suggesting the value of transitioning
to WGS as it becomes more cost-effective. DNA-seq often incorporates mate paired or paired-
end sequence, which allows for a more complete discovery of SVs. Another alternative is
long-read technologies that produce potentially much longer sequences from single chromo-
somes than prior next-generation sequencing methods. Prominent long read technologies
include platforms offered by Pacific Biosciences and Oxford Nanopore (English et al., 2012;
Jain et al., 2018), which likewise have advantages for structural variant discovery and for bet-
ter “phasing” mutations to discover how different clones are related to one another. Single-
cell DNA-seq (scDNA-seq) has also come into widespread use in basic research into cancer
genomics due to its value in studying clonal heterogeneity and for reconstructing clonal evo-
lution (Navin et al., 2011). scDNA-seq remains considerably more costly and technically chal-
lenging than scRNA-seq, however, and is thus in more limited use. Another class of special
sequencing technology of particular relevance to cancers are so-called “liquid biopsy”
methods, which provide ways to diagnose solid tumors and track their progression from
non-invasive blood draws (Crowley et al., 2013). A variety of related technologies for liquid
biopsy currently exist, including techniques based on the isolation of circulating tumor cells
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(CTCs) shed by tumors (Alix-Panabières & Pantel, 2013), small fragments of circulating free
DNA (cfDNA) released typically during tumor cell death (Diaz & Bardelli, 2014), and
isolating DNA from extracellular vesicles (EVs) that may be released by living tumor cells
in situ (Contreras-Naranjo et al., 2017), with each offering some unique advantages (Zhang
et al., 2017). Liquid biopsy is now also finding clinical use through commercially available
platforms such as Guardant360 (Guardant Health, Inc.) and PlasmaSELECT (Personal
Genome Diagnostics, Inc.).

Epigenetic and regulatory sequencing

Sequencing technologies have also found widespread use in cancer genomics as a way to
profile epigenetic markers and protein-DNA interactions that influence gene activity and can
underlie functional variation in cancers. DNA methylation has proven an important marker
of genetic regulation that is frequently perturbed in cancers and can provide markers of tu-
mor progression and prognostic power for outcomes (Das & Singal, 2004). A next-generation
technology, bisulfite sequencing, first made it practical to profile methylation at a whole-
genome scale (Meissner et al., 2005). The Oxford Nanopore technology has recently brought
methylation typing to long-read sequencing (Simpson et al., 2017). Assay for Transposase-
Accessible Chromatin sequencing (ATAC-seq) provides a different form of epigenetic infor-
mation, allowing genome-wide profiling of accessible chromatin (Buenrostro et al., 2015),
which likewise can identify regulatory phenotypes frequently perturbed in cancers. Chro-
matin immunoprecipitation sequencing (ChIP-seq), a sequence-based variant of the earlier
microarray-based “ChIP-chip” method, provides yet another view of regulatory interactions
by identifying regions of DNA to which proteins are bound (Axel et al., 2009; Ren et al., 2000),
which again often show variation in cancers. Chromatin conformation capture (CCC) (Dek-
ker et al., 2002), a technique for profiling three-dimensional chromatin structure, has given
rise to a diverse array of related technologies that have come into use in cancer genomics
because chromatin structure is frequently perturbed in cancers and may suggest likely sites
of structural variation (Fudenberg et al., 2011).

Applications of genomics in oncology

Tumor subtyping

Somatic variants are playing an ever-growing role in guiding cancer management, due to
more granular tumor characterization beyond TNM staging and chromosomal analysis, but
also due to the success of mutation-targeting therapies. Among the earliest prototypes of tar-
geted therapies is the anti-EGFR drug gefitinib, designed after years of in vitro and in vivo
experiments demonstrating the role of EGFR in oncogenesis (Arteaga, 2003; Mendelsohn &
Baselga, 2000; Woodburn, 1999). Only after FDA approval, an increased awareness
developed around heterogeneity in response to gefitinib in NSCLC patients, leading to
retrospective (Lynch et al., 2004) followed by prospective (Fukui et al., 2008) analyses iden-
tifying common mutations in EGFR underlying good response. This initiated a paradigm
shift in clinical trial methodology whereby mutational analysis guides study design
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(Russo et al., 2015). We discuss this example because it provides two lessons: the well-
established lesson of the promise of genomic characterization of tumors, and more impor-
tantly, the tediousness of this decades-long process from bench to bedside. More recently,
Big Data initiatives have introduced a new paradigm, shifting oncological research toward
high throughput, promising to create cheaper and more productive methods to reach person-
alized oncology. One such example noted above is The Cancer Genome Atlas (TCGA), which
characterized genomic and transcriptomic profiles for thousands of tumors along with clin-
ical data and pathology reports (Hutter & Zenklusen, 2018; Weinstein et al., 2013).

With millions of data points in each sample, the need to reduce dimensionality, identify
relevant signals, and build understanding beyond single genes and pathways emerged.
ML has been utilized for this purpose at various stages in the TCGA research pipeline. For
example, to facilitate somatic variant identification, D.E. Wood et al. simulated tumor exomes
by sequencing normal peripheral samples and engineering mutations to train Cerebro, an
extremely randomized trees classifier, a variant of random forest classifiers (Geurts et al.,
2006). They subsequently established the sensitivities and specificities of Cerebro and multi-
ple variant calling algorithms in this simulated data. These investigators then applied their
trained mutation-calling algorithm to TCGA and compared the mutation-calling accuracy
to the established standard, the PanCanAtlas consensus calling method. They showed high
levels of concordance and a statistically significant association between quality of PanCancer-
Atlas calls in TCGA and concordance rates with Cerebro.

Aside from variant calling, ML has been used to identify shared latent characteristics of
tumors using genome-wide data. Work by Malta et al. (2018) trained a penalized one-class
logistic regression ML algorithm to identify patterns consistent with “stemness” using
RNA-seq and genome-wide methylation data from cell lines ranging from high stemness
(embryonic stem cell lines or induced pluripotent stem cells) to low stemness (their differ-
entiated endodermal, mesodermal, or ectodermal progenies). The trained algorithm was
then used to identify this “stemness” characteristic in the TCGA tumor RNAseq and
methylation data. As expected, it was found that the stemness index was more prominent
in metastatic cancer, but this research also unexpectedly discovered an associated immune
checkpoint expression phenotype, possibly suggesting a stronger immune response to de-
differentiated phenotypes.

Dawson et al. (2013) integrated the molecular profiles of both copy number variations and
RNA expressions to group breast cancer patients into 10 distinct clusters, with different clin-
ical prognoses and providing insights on the potential drivers.

While the problems illustrated by these examples continue to be at the forefront of compu-
tational research in oncology, they at least provide proof-of-concept demonstrations for the
potential that Big Data and ML offer to interpret the complete multi-omic profile of a patient’s
tumor in the context of databases characterizing clinically pertinent features such as similarity
to tumors from other sites and probability of treatment response.

Driver mutation discovery

Although a single tumor may contain hundreds to thousands of somatic alterations, there
is a general consensus that not all mutations contribute equally to the initialization and pro-
gression of the tumor. Only a small amount of the somatic alterations arising either early or at
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critical time points during tumor development contribute to tumor progression and selective
advantages over the neighboring cell clones. These are named “driver” mutations/genes
(Futreal et al., 2004). Meanwhile, “passenger” mutations happen along with the driver muta-
tions but do not contribute to the tumor development. Although initial research focused on
finding “driver genes” (Greenman et al., 2007; Sjöblom et al., 2006), more recent research has
focused on the non-synonymous “driver mutations”. Researchers identify cancer driver mu-
tations through various strategies: based on mutation frequency and location, through causal
inference or ensembled methods of multiple tools.

Mutation-rate-based methods are built upon the assumption that driver mutations should
have higher recurrences than the background mutation rate. MuSiC is a package suite that con-
tains seven modules, where the core module estimates the background mutation rate and uti-
lizes three statistical tests to distinguish the significantly mutated genes from others (Dees et al.,
2012). MutSigCV aims to reduce the false positive significant genes, such as the olfactory recep-
tor genes and muscle protein titin genes, by accurately estimating the mutational heterogeneity
in cancer (Lawrence et al., 2013). It stratifies the statistical significance by taking into account
the heterogeneity across patients within a specific cancer type, mutational signatures of tumors,
and regional differences across the genome. However, low recurrence mutated drivers are
prone to be neglected in the mutation rate based methods.

Mutation location-based approaches assume that mutations present in conserved locations
of corresponding proteins are more likely to lead to defective proteins that cannot perform
their biological functions properly. CHASM used a random forest classifier to distinguish
driver mutations from missense passengers based on a set of features, including contextual
information of protein structure (Carter et al., 2009). Reva et al. introduced a functional
impact score (FIS) to identify the amino acid residue alterations that happened in the evolu-
tionary conserved regions (Reva et al., 2011). Similarly, Gonzalez-Perez and Lopez-Bigas
proposed the metric functional impact (FI) (Gonzalez-Perez & Lopez-Bigas, 2012) based on
a few tools estimating the functional effect of amino acid substitutions, such as PolyPhen-2
(Adzhubei et al., 2013) and SIFT (Kumar et al., 2009). HotSpot3D further discovered the
functional mutations with the guide of 3D protein structure (Niu et al., 2016).

Instead of inference of drivers in an unsupervised way, researchers have proposed
methods based on causal inference, i.e., based on the analysis of a large pool of cancer sam-
ples, to infer which somatic mutations contribute to the change of downstream phenotypes,
such as transcriptome or protein expression (Cai et al., 2019; Wang et al., 2018).

There exist tools that combine an ensemble of various tools or pipelines to systematically
identify the potential drivers followed by potential manual curation of the driver list. For
example, IntOGen combined results from both mutation-rate-based and mutation-location-
based algorithms (Abel Gonzalez-Perez et al., 2013). Bailey et al. conducted a comprehensive
aggregation of cancer drivers through the integration of 26 driver discovery tools (Bailey
et al., 2018).

Biomarkers of outcome in clinical practice

Treatment strategies in modern oncology have evolved from one size fits all regimens to
complex multimodality and increasingly personalized therapies. The adoption of breast
conserving therapy over radical mastectomy in early-stage breast cancer is a classic example
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of how the use of clinical risk factors led to more personalized treatment regimens that
decreased overtreatment and treatment-associated morbidity (Kroman et al., 2004). In the de-
cades since, we have developed a better understanding of the biological pathways involved
in cancer progression leading to the integration of histopathologic and molecular biomarkers
in clinical risk-stratification. The clinical utilization of molecular biomarkers is poised to in-
crease, especially as the development of next-generation high-throughput sequencing tech-
nologies now allows not only the ability to interrogate the expression levels of tens of
thousands of genes but also to uncover novel driver mutations and epigenetic changes.
From a clinician’s viewpoint, there is a pressing need for better prognostic, or better yet, pre-
dictive/prescriptive biomarkers that can help patients and clinicians make more personalized
treatment decisions. Several validated genomic biomarkers, including Oncotype DX, DCI-
SionRT, MammaPrint, and PAM50 are currently being used in the clinic as decision support
tools. In this section, we will review the development, training, validation, and interpretation
of several of the most commonly used biomarker tests.

Breast cancer is a biologically heterogeneous disease and risk-stratification of patients using
clinical factors is insufficient. Expression profiling can separate breast cancer into four major
intrinsic molecular subtypes (luminal A, luminal B, basal-like/triple negative, and HER2-
enriched) that have differential clinical outcomes. Integrating these intrinsic subtypes with
clinical risk factors led to the development of the PAM50 biomarker. The PAM50 test was
developed to both classify patient breast cancer samples as one of the four major intrinsic sub-
types and to stratify patients by their risk of breast cancer relapse utilizing the expression levels
of 50 selected genes and 5 control genes (Parker et al., 2009). The PAM50 intrinsic subtype clas-
sifier was trained on a dataset of 189 breast cancer and 29 normal samples taken from a het-
erogeneous cohort of patients with node-negative breast cancer who received no adjuvant
chemotherapy or endocrine therapy. Gene expression was derived from a mix of qRT-PCR
and microarrays. For subtype classification, the authors performed hierarchical clustering of
the expression levels of 1906 genes and were able to identify clusters representative of the
five intrinsic breast cancer subtypes in the majority of the breast cancer samples. These 1906
genes were further minimized to a 50 gene set that represented the top 10 most significant
genes per subtype. Using this reduced geneset, the authors then trained a Ridge-penalized
multivariable Cox model on a cohort of untreated node-negative patients to obtain a Risk of
Recurrence score (ROR) that estimates the probability of relapse within 5 years. The actual
numeric ROR score for each patient is derived from the sum of the coefficients of the Cox
model. In order to stratify patients into discrete risk groups using the continuous ROR score,
thresholds were chosen that resulted in no patients from the training set with luminal A
subtypes in the high-risk group and no basal-like subtypes in the low-risk group.

The prognostic performance of the PAM50 ROR score in estimating distant recurrence risk
has been validated in secondary analyses of large, randomized prospective trials. The first vali-
dation study was performed in a cohort of 786 women with non-metastatic breast cancer
treated in British Columbia (Nielsen et al., 2010). Of note, in contrast to the patient character-
istics of the studies used to develop PAM50, the majority (71%) of patients in this validation
study had node-positive disease and all patients received adjuvant endocrine therapy with
5 years of tamoxifen. Despite these differences, both classifications by intrinsic subtype and
the PAM50 ROR score provided additional prognostic information regarding 5-year disease-
specific survival when compared to risk stratification by clinicopathologic variables alone.
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Another more recent validation study of the prognostic performance of the PAM50 test
was accomplished for a cohort of 1620 hormone-receptor positive post-menopausal breast
cancer patients treated with tamoxifen alone or tamoxifen and anastrozole enrolled on the
ABCSG-8 trial (Gnant et al., 2014). The authors found that the addition of both the continuous
ROR score or the discrete risk groups significantly improved the prognostic performance of
risk stratification by clinicopathological variables alone. One study compared the PAM50
ROR score to the Oncotype DX recurrence score in estimating the distant recurrence risk of
postmenopausal women with hormone-positive breast cancer treated with either tamoxifen
or anastrozole alone (Dowsett et al., 2013). While both genomic tests assigned similar
numbers, but non-overlapping groups of patients to the low-risk group, the PAM50 ROR
score stratified more patients to the high-risk group than Oncotype DX. Interestingly, the
study found that in terms of prognostic performance, that the PAM50 ROR outperformed
Oncotype DX in estimating distant recurrence risk.

Another clinically relevant genomic biomarker that is available to breast patients and cli-
nicians is the MammaPrint test. The development cohort for MammaPrint consisted of 117
women with early-stage, node-negative breast cancer with the majority of patients presenting
with sporadic invasive breast cancer and 20 patients harboring BRCA1/2 germline mutations
(van’t Veer et al., 2002). The expression levels of 25,000 genes were measured with microar-
rays and this feature space was then reduced by selecting for genes with greater than a two-
fold difference in expression levels resulting in roughly 5000 selected genes. Unsupervised
hierarchical clustering of the expression of these approximately 5000 significantly regulated
genes and 98 tumors revealed two distinct clusters with disparate risk for distant metastases
following therapy. The authors also went on to develop a prognostic signature for distant
metastasis risk using supervised machine learning on a subset of 78 tumors from patients
with sporadic breast cancers of whom 34 developed metastases within 5 years post-
treatment. Training of this prognostic signature involved a separate feature selection step
that reduced the full 25,000 gene microarray dataset to around 5000 highly regulated genes.
Another feature selection step was implemented by calculating the Pearson correlation coef-
ficient for each gene in the reduced gene set and the risk of distant metastasis, the clinical
outcome of interest, which resulted in the selection of 231 outcome-associated genes. Finally,
these 231 genes were ranked by the magnitude of their correlation coefficient and further
refined using forward feature selection with leave-one-out cross-validation to obtain an
optimal set of 70 genes that yielded a cross-validation accuracy of 83%. The classification per-
formance of this final 70-gene prognostic signature was evaluated on an unseen test set of 19
patients with sporadic node-negative breast cancer and achieved an accuracy of approxi-
mately 90% across different thresholds optimized for accuracy or sensitivity. A larger test
set from the same institution (van de Vijver et al., 2002) confirmed that the 70-gene signature
could outperform existing clinicopathologic risk stratification schemes. An independent vali-
dation of this signature was performed by the TRANSBIG consortium (Buyse et al., 2006) in
Europe, which collected breast cancer samples from 307 patients and stratified patients by
their risk for distant metastases within 5-year using either the 70-gene signature or a risk
stratification tools based on clinicopathologic factors (Adjuvant! online software (Ravdin
et al., 2001)). It was determined in this study that risk stratification using the 70-gene signa-
ture was significantly better in predicting both 5-year distant metastasis risk and 10-year
overall survival than clinicopathologic factors alone.
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The MINDACT trial was the first prospective, randomized validation study of the Mam-
maPrint 70-gene signature and was initially designed to include women with early-stage,
node-negative breast cancers, although this was later expanded to also include women
with up to three positive nodes. Patients were assigned into both clinical and genomic risk
groups based on clinicopathologic variables or the 70 gene signature, respectively, and those
with discordant clinical and genomic risk scores were then randomized to receive adjuvant
chemotherapy. However, there were no statistically significant differences in outcomes
with or without adjuvant chemotherapy within the discordant risk groups in terms of the pri-
mary endpoint of distant metastatic risk or the secondary endpoints of disease-free and over-
all survival. Based on the findings of MINDACT, there is currently not sufficient evidence to
support the use of the MammaPrint 70-gene signature to predict the benefit of adjuvant
chemotherapy (Cardoso et al., 2016; Markopoulos et al., 2020).

The only prospectively validated predictive biomarker to date is the 21-gene Oncotype DX
recurrence score, which is currently used to determine the benefit of the addition of adjuvant
chemotherapy in patients with hormone receptor positive, node-negative breast cancer
(Soonmyung Paik et al., 2004; Sparano et al., 2015, 2018, 2020; Sparano & Paik, 2008). The
Oncotype DX recurrence score was originally developed from a curated set of 250 genes
that were collated from prior studies of dysregulated genes in breast cancer. The authors per-
formed additional feature selection by identifying genes that were highly correlated with
breast cancer recurrence in three published studies of gene expression profiling in breast can-
cer. The three studies used were intentionally heterogeneous in order to select for robust gene
sets associated with recurrence risk (Cobleigh et al., 2003; Esteban et al., 2003; Paik et al., 2003,
p. 82). Five reference genes and 16 tumor-related genes were eventually selected for the final
recurrence score model. Clustering and PCA of the 16 tumor-related genes showed that they
broadly defined a few functional groups such as genes associated with proliferation, inva-
sion, and HER2 which increased the recurrence score or genes associated with estrogen recep-
tor signaling that decreased the recurrence score. Patients were then risk-stratified by their
continuous recurrence score into low, intermediate, and high-risk groups using cutoff points
derived from the results of the NSABP B-20 trial. The authors evaluated the recurrence score
on 668 patients with ER-positive, node-negative breast cancer treated with tamoxifen enrolled
on the NSABP B-14 trial and found on multivariate Cox models that the recurrence score
significantly improved prognostic information beyond standard clinicopathologic factors
such as tumor grade, size, age, and receptor status.

The use of the Oncotype DX recurrence score as a prognostic and predictive biomarker
was recently prospectively validated in the randomized, phase III TAILORx trial (Sparano
et al., 2018). The trial enrolled over 10,000 women with hormone receptor positive, HER2-
negative, node-negative breast cancer who met the criteria for consideration of adjuvant
chemotherapy. Enrolled patients were then risk-stratified by their Oncotype DX recurrence
scores with all high-risk patients assigned to receive hormone therapy and chemotherapy
and all low-risk patients assigned to hormone therapy alone. Patients who had an interme-
diate recurrence score, defined as 11e25 in TAILORx, were randomized to hormone therapy
alone or hormone therapy and chemotherapy. The primary endpoint was the noninferiority
of hormone therapy alone in the study population of patients with an intermediate recurrence
score. At 9 years, there was no significant difference in invasive disease-free survival, distant
or locoregional failure, or overall survival thereby confirming the utility of Oncotype DX as a
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biomarker for chemotherapy use in patients with intermediate (11e25) recurrence scores.
Given these results, the 21-gene Oncotype DX recurrence score is now the preferred genomic
biomarker test to determine the need for adjuvant chemotherapy for patients with hormone
receptor-positive, node-negative breast cancer in the NCCN guidelines (Breast Cancer (Version
6.2020), 2020). The application of Oncotype DX to predict chemotherapy benefit for node-
positive breast cancer patients is currently undergoing prospective validation in the ongoing
RxPONDER trial (Jasem et al., 2017).

While the biomarkers discussed thus far are only applicable to women with invasive breast
cancer, a potentially useful biomarker, called DCISionRT, was recently developed to guide
recommendations for adjuvant radiation following surgery for ductal carcinoma in situ
(DCIS) (Bremer et al., 2018). The DCISionRT test utilizes both molecular markers as well as
a subset of clinicopathologic factors in the final model. The test was developed on archived
tumor samples from 526 women with DCIS treated at Uppsala University Hospital in Swe-
den and at University of Massachusetts Hospital in the United States. An initial set of molec-
ular and clinicopathologic features were selected from previously published reports and
expert communications based on their association with DCIS recurrence or disease progres-
sion. Further feature selection was performed using forward and backward selection with
cross-validation. It should be noted that in contrast with the previously discussed biomarkers
that assess transcript-level gene expression, the molecular features included in DCISionRT are
derived from immunohistochemical staining of tissue. Ultimately, seven molecular markers
(PR, FOXA1, COX-2, SIAH2, HER2, Ki-67, P16/INK4A) and four clinicopathologic features
(age, tumor size, margin status, and palpability) were selected for the final predictive model.
Internal validation of the DCISionRT Decision Score demonstrated improved prognostic per-
formance over clinicopathologic risk-stratification. External validation of the DCISIONionRT
DS was recently published and supported the prognostic utility of the DS in 455 women with
DCIS who underwent lumpectomy with or without radiation (Weinmann et al., 2020). How-
ever, the validity of the DCISionRT DS as a predictive biomarker for adjuvant radiation in
DCIS remains to be proven in a prospective randomized clinical trial.

The biomarkers reviewed here are a small subset of the molecular signatures that are
currently in development or undergoing validation studies. As next-generation sequencing
techniques continue to improve and become more integrated into the clinical process of
care, the opportunities to apply biological insights in oncology treatment decisions will
continue to expand. Patients are also becoming more aware and in certain cases proactively
requesting molecular tests, especially as these biomarkers become more commercially visible
and accessible. This is both an opportunity and a challenge. Clinicians will be challenged to
understand how to apply these molecular biomarkers in the correct clinical scenarios as well
as how to interpret the results. It is tempting to base treatment decisions on molecular tests
that have validated prognostic but unclear predictive utility. The vast majority of currently
available biomarker tests are prognostic. A predictive or prescriptive biomarker must be vali-
dated in a prospective trial that randomizes patients to a treatment strategy by their
biomarker derived risk. Lastly, it is also important for clinicians to understand at a high level
how these biomarker tests are developed and in particular the unique challenges of choosing
the appropriate patient cohorts and genes of interest as these factors can determine which pa-
tients may benefit from a particular molecular signature. These and other potential hurdles
will be addressed in the section to follow.
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Pharmacogenomics

The ability to optimally recommend existing anti-cancer drugs, and discover novel
agents, with the facilitation of genomic profiles is a critical task in chemotherapy and phar-
macogenomics for precision medicine and personalized treatment of cancer patients (Moffat
et al., 2014). Since the molecular mechanisms of patients with the same cancer type can be
distinct, drugs effective in one patient may be ineffective in others (Evans & Relling, 1999;
Relling & Evans, 2015). In clinical practice, clinicians identify the differences across patients
through cancer subtypes, and provide the best treatment based on the molecular targets and
cancer subtypes (Gu et al., 2016). In some subtypes, the targeted pathways or mechanism of
action (MoA) are well understood. For example, since the PI3K/AKT/mTOR pathway
plays a crucial role in some ER-positive breast cancers, the mTOR inhibitor everolimus
can be an effective treatment in subsets of patients (Yardley et al., 2013). Similarly,
HER2-targeted antibodies such as trastuzumab can significantly improve the recurrence
and survival of early-stage HER2 positive breast cancer patients (Goutsouliak et al., 2020;
Slamon et al., 2011).

The extensive screening assays of cancer cell lines have made it possible to test the drug
resistance of cancer cells using a panel of potential anti-cancer drugs. Several popular cancer
cell line drug sensitivity datasets are publicly accessible, including the NCI-60 (Shoemaker,
2006), CCLE (Barretina et al., 2012), and GDSC (Yang et al., 2013) datasets. Most of these
datasets consist of both the response data of cell lines to drugs in the form of IC50 or activity
area, as well as the molecular profiles of the cell lines, including somatic mutations, CNAs,
transcriptomic expressions, and methylation levels. Computational methods, such as ML
models trained over these data, can suggest potentially effective drugs for a cell line if
genomic information is provided. For example, a Bayesian multitask multiple kernel
learning (MKL) model utilizing Bayesian inference, multitask learning, and kernelized
regression was able to achieve the best prediction performance in the NCI-DREAM drug
sensitivity prediction challenge (Costello et al., 2014). The prediction accuracy of models
can be further improved by taking into account the external knowledge such as cell line
or drug similarities (Wei et al., 2019; Zhang et al., 2015). More recently, researchers showed
that the models utilizing the features generated by an autoencoder neural network pre-
trained on the genomic and transcriptomic features of TCGA data can be effective compet-
itors with classical machine learning models trained on the CCLE and GDSC data alone
(Chiu et al., 2019; Ding et al., 2018).

There are limitations to making inferences from the cancer cell lines discussed above. For
instance, the data from these specific cell line assays cannot uncover additional MoAs that
may be therapeutic targets for new drugs or molecules. Computational researchers have pro-
posed a few solutions for this, including drug discovery (Moffat et al., 2014) and drug repur-
posing/repositioning (Zhang et al., 2020). Another drawback with utilizing cell line data is
the huge gap between in vitro cell lines and in vivo real tumors that consist of a mixed pop-
ulation of cancer cells, normal stromal cells, and infiltrating immune cells. One potential so-
lution is leveraging transfer learning to apply models fitted on in vitro cell lines to in vivo
tumor models, such as patient-derived xenografts (Bhattacharyya et al., 2020; Sharifi-
Noghabi et al., 2019).
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Common hurdles of machine learning in genomics

ML can provide a powerful and versatile set of tools, as the preceding discussion demon-
strates. When bringing them to new applications or data sets, though, they can be easily
applied in ways that are unsound or less than optimal. This section considers some of the
common challenges to applying ML successfully in genomics work, particularly for cancer
genomics, and some strategies by which they may be approached.

Challenges in data acquisition

Obtaining sufficient quantity and quality of data plays an essential role in successfully
applying ML in any context, and cancer genomics is no exception. With advances in
sequencing techniques and the rapid expansion in the scale of genomic data, a few recurring
issues related to data acquisition and sharing have emerged. These include challenges in the
availability of datasets, cleaning and summarizing raw datasets, and performing ML analysis
while assuring the privacy and security of potentially sensitive genomic data.

There have been several unified efforts internationally in collecting comprehensive
genomic and pathological data of cancer samples in past years, such as The Cancer Genome
Atlas (TCGA) and International Cancer Genome Consortium (ICGC) noted previously. In
addition to the original datasets, which can contain petabytes of genomic data of various
types (Hutter & Zenklusen, 2018), researchers and clinicians may also rely on summary sta-
tistics or aggregated results such as information on inferred driver mutations or specific sub-
types of cancer data. Efforts to provide such data resources therefore typically involve
considerable downstream processing and analysis to supplement them with informative
derived data, associate them with relevant metadata, and make the raw data easier for the
general research community to use. Table 3.1 provides a few examples in the form of a
list, not meant to be comprehensive, of sources of cancer genomic data and associated derived
data and metadata, most of which are accessible through easy to use web user interface.
Reference data resources are TCGA/GDC (Jensen et al., 2017), dbGaP (Tryka et al., 2014),
ICGC (Hudson et al., 2010), EGA (Lappalainen et al., 2015), METABRIC (Pereira et al.,
2016), NCI-60 (Shoemaker, 2006), CCLE (Barretina et al., 2012), GDSC (Yang et al., 2013),
and CancerSEA (Huating Yuan et al., 2019).

Apart from the original large scale and heterogeneity of the data, general researchers may
face challenges in accessing genomic data due to the needs for privacy and security. This is
especially an issue in the clinical area or potentially personally identifiable data, both of
which are issues for cancer genomics. Researchers traditionally used de-identification tech-
niques to directly remove sensitive Protected Health Information (PHI) such as name or
address, which is defined in the Health Insurance Portability and Accountability Act of
1996 (HIPAA) (Cohen &Mello, 2018). However, this practice can not fully protect the privacy
of patients or research subjects. For example, data may be subject to a linkage attack, which
matches de-identified datasets with external databases to expose the identity of the individ-
uals in a seemingly anonymous dataset (Sweeney, 2002).

Another traditional strategy is to grant data access only to qualified researchers or groups.
For example, both TCGA and ICGC provide different access tiers to researchers based on
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need and demonstrated capacity to protect sensitive data (Hudson et al., 2010; Weinstein
et al., 2013). Researchers or general audiences without specific training can only access the
less sensitive public aggregated part of the data. However, more sensitive data, such as the
original bam/vcf files, and germline information are only available to selected research
groups that are reviewed by a committee. Those researchers judged to be qualified will typi-
cally also be required to take additional training and conduct experiments or analysis under
restrictions, such as the use of a protected computing environment that provides additional
guarantees for the privacy of research subjects.

More recently, methods for privacy-preserving data analysis have come into use for
sharing data in more limited ways that inherently protect privacy and security. For example,
researchers in the area of cryptography and ML have proposed a paradigm of differential pri-
vacy (Dwork, 2008) to cope with the challenge of providing access to a set of samples while
not leaking information on individual patient samples. Roughly speaking, differential pri-
vacy works by adding carefully designed random noise to data in ways that make it provably
impossible under certain assumptions to extract information about the data for any specific
individual. Recently, this technology has been applied to the area of genomics (Berger &
Cho, 2019; Cho et al., 2018). Under such a framework, researchers are still able to apply
potentially sophisticated ML inference algorithms to the data but can only access the final
output of analysis instead of the raw genomic data.

TABLE 3.1 Examples of important cancer genomic data sets of value to ML applications in cancer
genomics.

Databases Pan-cancer
Tumor or
cell line URL Comment

TCGA/GDC
(Jensen et al., 2017)/
dbGaP
(Tryka et al., 2014)

Y Tumor https://portal.gdc.cancer.
gov/

TCGA data were hosted through
dbGaP before 2016, but they are
now hosted through GDC.

ICGC
(Hudson et al., 2010)

Y Tumor https://icgc.org/

EGA (Lappalainen
et al., 2015)

Y Tumor https://ega-archive.org/

METABRIC
(Pereira et al., 2016)

N (breast
cancer)

Tumor https://www.cbioportal.
org/study/summary?
id¼brca_metabric

Large scale breast cancer dataset

NCI-60
(Shoemaker, 2006)

Y Cell line https://dtp.cancer.gov/
discovery_development/
nci-60/

Drug sensitivity data

CCLE
(Barretina et al., 2012)

Y Cell line https://portals.
broadinstitute.org/ccle

Drug sensitivity data

GDSC (Yang et al., 2013) Y Cell line https://www.cancerrxgene.
org/

Drug sensitivity data

Common hurdles of machine learning in genomics 55

I. Fundamentals and overview

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://icgc.org/
https://ega-archive.org/
https://www.cbioportal.org/study/summary?id=brca_metabric
https://www.cbioportal.org/study/summary?id=brca_metabric
https://www.cbioportal.org/study/summary?id=brca_metabric
https://www.cbioportal.org/study/summary?id=brca_metabric
https://dtp.cancer.gov/discovery_development/nci-60/
https://dtp.cancer.gov/discovery_development/nci-60/
https://dtp.cancer.gov/discovery_development/nci-60/
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/


Data sparsity

Although there has been a boom in genomic analysis of cancer cohorts in recent years, the
public cancer cohorts usually include tens of thousands of patients, or, for private ones, up to
hundreds of thousands (Chalmers et al., 2017). For more specialized kinds of questions,
cohort sizes may range from just tens of samples to thousands. In contrast, the ImageNet
dataset in computer vision contains more than 14 million images (Deng et al., 2009) while
the Yelp reviews dataset used in natural language processing (NLP) studies contains more
than 5 million reviews (McAuley & Leskovec, 2013). At the same time, genomic data nor-
mally have high dimensional feature sets. For human beings, we have more than 20,000 genes
and 324,000,000 known variants in total. The limited samples, high dimensions, and large
noise characterizing the genomic data can lead to fragile machine learning models, e.g., over-
fitting and lack of interpretability. Researchers have tackled high dimensional data with
various approaches, including feature selection and feature transformation.

Small sample sizes relative to the feature set present a challenge for almost any kind of ML.
In some cases, dealing with small sample sizes may mean favoring different ML methods that
are less data intensive, e.g., using support vector machines (SVMs) instead of popular deep
learning approaches (Brown et al., 2000; Guyon et al., 2002). Extra attention to protecting
models from overfitting is also warranted. ML offers a variety of common methods for pro-
tecting a model from overfitting during learning, including Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), or other regularization strategies that bias to-
ward simple models (Kuha, 2004). It is also important to validate robustness to data subsam-
pling and to independent data sets post-hoc. The use of prior knowledge to bias a model to
reflect expected outcomes can also help mitigate the effects of limited training data.

Another way to mitigate the model complexity is leveraging the effectiveness of other
related data available, e.g., through transfer learning (Weiss et al., 2016), multitask learning
(Caruana, 1998), and semi-supervised learning (Hady & Schwenker, 2013). These methods
utilize knowledge from other applications, with the hypothesis that the data entails specific
structure and can improve performance when the number of samples is limited by capturing
that structure. In transfer learning, instead of working on the current task, the model is first
pretrained on a related task, and then part of the pretrained model parameters are transferred
to the current task to boost the performance. For example, in order to predict the differentially
expressed RNAs from the somatic mutations in a tumor, researchers first pretrained “gene
embeddings” using a Mut2Vec model in an unsupervised way (Kim et al., 2018), and then
transferred the gene embeddings to improve the RNA expression prediction task (Tao, Cai,
et al., 2020). In multitask learning, it is thought that multiple prediction tasks with limited
sample sizes are closely related to each other, and therefore it is proposed that sharing model
parameters across these tasks can improve the performance of individual tasks. Yuan et al.
formulated the resistance of cell lines to multiple anti-cancer drugs as a multitask problem
and found that the collaboration of these individual tasks facilitates the overall prediction
(Yuan et al., 2016). With semi-supervised learning, we seek to overcome the problem of hav-
ing access only to limited amounts of labeled data for which a property of interest is known,
but also with access to many more unlabeled samples. By integrating the prior assumption
that similar samples are more likely to share the same label, semi-supervised methods can
improve the prediction of labels by utilizing a large number of unlabeled samples. For
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example, Bair and Tibshirani utilized gene expression data to predict breast cancer patient
survival, and found it outperformed both supervised learning or clustering methods alone
(Bair & Tibshirani, 2004).

One particularly important class of methods for dealing with data sparsity is dimension-
ality reduction, which refers to a set of strategies for shrinking the set of features from which
we seek to learn. One simple version of data sparsity is straightforward: since many features
are redundant in a dataset, it is possible to just select a subset of essential features that are
important to the task. A few major categories of methods have been developed for this pur-
pose (Saeys et al., 2007), including filter (Xing et al., 2001), wrapper (Kohavi & John, 1997),
and embedded methods (Robert Tibshirani, 1996). Taking the cancer type classification task
through microarray expression profiles of tumors as an example (Zhao & Wu, 2016), the
training process of a machine learning model is equivalent to optimizing an objective func-
tion. In the case of wrapper methods, the subset of genes is selected that can achieve the best
performance on the validation dataset. In practice, it is computationally infeasible to find
the optimal subset of around 20,000 features, but many heuristic algorithms have been pro-
posed to select suboptimal solutions, e.g., stepwise forward selection. In embedded
methods, however, additional regularization terms are added on the model parameters to
the original objective/loss function. A widely used version of this is the L1-regularization
of the parameters, or Lasso (Tibshirani, 1997). The L1 regularization is equivalent to having
a Laplacian prior to the model parameters, therefore enforcing a sparse solution, where
most of the coefficients are zeros, i.e., not selected. Wrapper methods are in general compu-
tationally expensive and prone to overfit. Therefore it is necessary to have a proper split of
the dataset during tuning and evaluation, e.g., nested cross-validation (Cawley & Talbot,
2010). Embedded methods are faster and easier to implement in practices (Cawley & Talbot,
2010).

Apart from the data-driven dimension reduction methods, computational biologists may
also incorporate a biological database for dimension reduction through a knowledge-
driven approach. In cancer genomics, a common approach is to reduce the gene-level expres-
sions into pathway-level expressions (Drier et al., 2013; Park et al., 2009; Tao et al., 2019; Tao,
Lei, et al., 2020). A pathway is defined as a set of closely related genes that are interact in the
genome or participate in the same or similar molecular processes, and therefore are likely to
show correlated expression. A few knowledge bases can be utilized, e.g., the DAVID data-
base (Dennis et al., 2003, p. P3), KEGG pathway database (Kanehisa & Goto, 2000), and
Gene Ontology (Mi et al., 2013). This kind of knowledge-driven dimension reduction method
can especially be effective when the sample number is limited.

Unsupervised learning methods are also useful ways of reducing noise and reducing the
dimension of input features to the model. Principal components analysis (PCA) can identify
and utilize the correlation across features from the data to represent a complex dataset with a
reduced set of derived features. PCA rotates the coordinates of the original features, such that
the variance of samples is largest to the first axis of the new coordinate, and is second largest
to the second axis, etc. For noise reduction purposes, a method will select the top k dimen-
sions that are able to explain at least (1-ε) of the total variance of the samples, where ε is typi-
cally set to be 0.05 or 0.01. In other cases, one might choose the top 50 or 100 or 200
dimensions. PCA is also often used as a preprocessing step for nonlinear visualization tools
such as t-SNE, as introduced below. More recently, some researchers have utilized the
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“autoencoder” to extract the nonlinear hidden states of the original input (Alavi et al., 2018;
Hinton & Salakhutdinov, 2006). The autoencoder is a type of neural network with the output
the same as the input, and the central layer of the autoencoder is used as the compact repre-
sentation of input features, which can be used for recovering the dense high-dimensional
input signals. It can be proved that PCA is equivalent to an autoencoder with one hidden
layer under specific conditions (Bourlard & Kamp, 1988).

PCA has the advantage of a linear transformation. It tries to find a good viewpoint to pre-
sent the data instead of changing the data structure. PCA is not the best option for visual-
ization in many cases because the differences of samples may exist in other axes instead of
the first two. Therefore, nonlinear transformations to the two-dimensional space is neces-
sary. t-SNE (van der Maaten & Hinton, 2008) and UMAP (McInnes et al., 2018) are widely
used methods for visualization, which are based on the intuition that the near samples in
the original feature space should be close to each other in the reduced 2-D space as well.
The two methods and improved variants are widely used in the analysis of bulk and
single-cell molecular profiles (Abdelmoula et al., 2016; Linderman et al., 2019). UMAP in
general yields smoother boundaries than t-SNE. Another advance of UMAP is its flexibility
of choosing kernel functions, which defines similarity or distance between samples, making
it suitable for applications of single-cell RNA data (Wang et al., 2017). Researchers also use
nonlinear transformations such as autoencoder (introduced in the previous subsection) or
VAE for dimension reduction of genomic data. However, these only capture local informa-
tion instead of global, thus may not be a suitable way for feature engineering. More
advanced methods from the field of manifold learning may be employed to decompose
data into lower-dimensional models even if they form complex substructures in the full
feature space.

Inter-tumor heterogeneity

Another frequently encountered challenge of cancer genomic data in machine learning is
high inter-tumor heterogeneity. Depending on the tumor type, there may be a number of sub-
types with substantially different molecular mechanisms, confounding many forms of
genomic analysis (Parker et al., 2009). Where a subtyping is well defined and understood,
pre-partitioning data by subtype (Hofree et al., 2013) may avoid some of the challenges of
confounding data at the cost of reducing cohort sizes and making it hard to infer cross-
subtype effects. Even if a subtyping is not fully understood, unsupervised clustering ap-
proaches (e.g., k-means clustering) can be used as a preprocessing step to partition data
into more homogeneous subgroups before further analysis (Liu et al., 2006). Subtyping re-
mains an area of active study, however, and meaningful subtypes continue to be discovered
and refined. Furthermore, even within a defined subtype, most cancers commonly exhibit so-
matic hypermutability (Lawrence et al., 2013), leading typically to large amounts of idiosyn-
cratic, functionally irrelevant passenger mutations that can expand data dimensionality,
further confounding analyses and limiting the effectiveness of simple strategies for dimen-
sionality reduction. General strategies for dealing with data sparsity and large feature sets
discussed above may mitigate such problems. Specialized methods, such as training models
on mutation burdens at the gene or pathway level rather than individual variants, can also
reduce, but not eliminate, these challenges.
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Intra-tumor heterogeneity

Another recurring challenge of cancer genomic data is intra-tumor heterogeneity (ITH), i.e.,
cell-to-cell variability within single tumors (Jamal-Hanjani et al., 2015; Swanton, 2012). ITH is a
common feature of cancers arising from the process of clonal evolution within a tumor and
from the somatic hypermutability processes frequently active in tumors during this process
(Loeb, 1991). As a result, cancer genomic data often must be interpreted as mixtures of cell
types (clones) that may exhibit different mutations, epigenetic markers, or patterns of gene ac-
tivity. This clonal heterogeneity is further exacerbated by contributions from infiltrating im-
mune cells or other stromal contamination (Tao et al., 2019; Zhu et al., 2019). ITH is a
confounding factor for many common ML analyses, as genetic or genomic signals that underlie
tumor function are obscured by clones that lack those signals. The problem is particularly vex-
ing for prognostic prediction because progression processes in cancers, such as metastasis or
the development of drug resistance, frequently proceed from relatively rare clones within a tu-
mor (Heselmeyer-Haddad et al., 2012) and thus prediction based on the dominant genomic fea-
tures of a tumor may poorly predict the behavior of the tumor as a whole.

While ITH is problematic for ML in cancer genomics, it can be dealt with by computational
or experimental approaches. Computational strategies for working with ITH typically
involve the use of genomic deconvolution, a strategy for computationally separating mixed
genomic signals to infer likely signals of specific clones within a tumor that can then be exam-
ined separately during machine learning (Venet et al., 2001). While such approaches were
initially developed specifically for resolving tumor impurity, by separating tumor and stro-
mal contributions (Etzioni et al., 2005), the idea was later extended to resolve distinct clones
within single tumors. Numerous deconvolution methods exist today, some relying on multi-
ple samples from a single tumor to resolve clonal mixtures and others on comparison across
tumors to resolve common features of progression across a cohort. Clonal deconvolution is
often combined with tumor phylogenetics (Schwartz & Schäffer, 2017), i.e., inference of trees
describing the evolution of clonal states in a tumor, to better resolve substructure (Beerenwin-
kel et al., 2005; Schwartz & Shackney, 2010).

As single-cell genomics has become more practical and widespread, it has increasingly dis-
placed deconvolution methods for resolving clonal mixtures computationally from bulk
sequencing data. The peculiar error characteristics of different single-cell technologies d
which may include high error rates, high rates of allelic dropout or other missing data,
and aberrations such as doublet sequences d create distinct challenges for ML from
single-cell data that generally must be resolved to adapt ML analysis methods from bulk
to single-cell data (Suvà & Tirosh, 2019). A handful of methods now exist as well for
combining bulk and single-cell data in common analyses to achieve some advantages for
each method type (Lei et al., 2020; Malikic, Jahn, et al., 2019; Malikic, Mehrabadi, et al., 2019).

Other common data issues

Another issue that can plague many genomic applications is imbalanced data. Imbalanced
data refers to datasets that are skewed to some possible outcomes over others. An example
would be the challenge of predicting a rare complication or atypical progression outcome
(Diz et al., 2016), e.g., predicting those patients with poor outcomes in cancers that are rarely
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fatal, because there are few examples from which to train a model. General methods for
dealing with data sparsity d such as reliance on prior knowledge, model regularization,
or strategies such as transfer learning d may also help address challenges of imbalanced
data. In addition, specialized strategies including the upsampling of minor categories via
the generation of artificial “decoy” data (Blagus & Lusa, 2013), or the downsampling of major
categories, can mitigate the problem of imbalance. When coping with imbalanced data, it is
crucial to choose proper evaluation metrics. Common intuitive assessments such as accuracy
and the receiver operating characteristic (ROC) curve do not describe the minor class prop-
erly. Instead, other measures such as the F1 score and precision-recall curve are in general
better choices in these cases (Davis & Goadrich, 2006).

Missing and/or inconsistent annotation of data are likewise common problems of cancer
genomic data (de Souto et al., 2015). While data quality has generally improved across genomic
technologies over time, noisy assays and complex biology can lead to missing fields in subsets
of data points, posing yet another problem for ML. This may be particularly a concern for clin-
ical data, where standards for expert annotation may still be less precise and consistent than is
ideal for automated inference. Furthermore, large consortium efforts, for all their value to the
scientific community, can introduce problems of standardization across partner sites. While
changes in practice concurrent with the broader adoption of electronic health records (EHRs)
may help, ML methods must be able to cope with all of these issues to make use of them.
Cleaning data of poorly annotated data points or data fields can resolve some such problems
(Jianfang Liu et al., 2018). ML may also rely on imputation, i.e., using simpler learning models
or other heuristics to infer likely values for missing data, or be engineered directly to allow for
unknown or uncertain values in data (Beretta & Santaniello, 2016).

This remains far from an exhaustive list about the challenges of genomic data and cancer
genomic data in particular. It is intended, however, to highlight some of the common issues
and provide an overview of typical ML strategies for dealing with these or similar problems.
When other difficulties arise, some of the same strategies discussed above may prove useful
in achieving good performance in less-than-ideal conditions for machine learning inference.

Future directions

The idea of personalized and precision oncology is no longer new, but the field continues
to rapidly advance through a combination of dramatic improvements in genomic methods
and other synergistic biotechnologies. This, combined with a burgeoning field of computa-
tional cancer biology using innovative machine learning methods, is realizing the promise
of translating masses of genomic data into actionable information for clinicians. There is no
indication that these trends are slowing down and indeed they seem likely to continue to
accelerate. It is thus fair to consider how the field might continue to evolve in the coming
years and how future clinicians and clinical cancer researchers might take advantage of inno-
vations yet to come.

Sequencing technologies continue to become more versatile and affordable, and one can
fairly speculate on how that will impact future cancer treatment. While targeted or whole-
exome sequencing remain the standard in clinical practice, costs of whole-genome sequencing
are now almost negligible compared to the cost of cancer treatment. We can thus anticipate
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WGS becoming routinely available as part of cancer treatment and other medical care, along
with other emerging genomic technologies, enabling a host of new downstream computa-
tional analyses to become routine in cancer care. Other genomic technologies that are still
maturing, such as “liquid biopsy” d i.e., the genomic characterization of tumor cells using
peripheral blood d can likewise be expected to become more routinely available as part of
cancer treatment or even routine public health screening (Mattox et al., 2019).

Although single-cell sequencing technologies appeared late in the last century (Eberwine
et al., 1992) and gained a great deal of attraction in the past decade in academia (Hwang
et al., 2018), as far as we know, they have not yet become routine in clinical practice. How-
ever, single-cell sequencing has a potentially wide application in oncology, for example, iden-
tifying the chemo-resistant tumor clones or malignant cell populations from the tumor tissue
(Haque et al., 2017). One common feature of many such technologies is that once a biotech-
nology becomes widely available for deriving genomic data, new computational advances
can be added with minimal cost and no additional burden to the patient. Also, improvements
in collecting high-quality clinical data will help solve some of the hurdles associated with
data sparsity and lead to a more efficient pipeline from biomarker development to validation.
We will likely not know for some time what specific directions will have clinical impact, but
the enormous growth in computational cancer biology suggests many possibilities for recon-
structing tumor evolution, progression, and cell migration and applying ML to project its
future trajectory.

One further prediction is that an emerging era of big data medicine and computationally
augmented reasoning will usher in a need for rethinking standards of training for clinicians
and other healthcare professionals, who will not necessarily be inventing such technologies,
but will all need to understand and use them (Welch et al., 2014). Standard medical education
today provides aspiring physicians only limited training as to their use and how to critically
evaluate these tools. Increasing effort at developing interpretable ML models may help bridge
the gap between the state-of-the-art of ML research and their use by non-experts, but cannot
eliminate the need for physicians to understand and determine when ML tools and analyses
are appropriate for them and how to weigh results of such analyses that may critically depend
on model assumptions and the available data. We can suggest that more advanced training in
data science, computational thinking, and statistical reasoning will be key to preparing future
generations of oncologists to practice medicine in a climate where it is necessary to work with
and evaluate computational inferences alongside their own training and judgment.
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